
In Search of Odd Perfect Numbers:
A Computational Sandbox

M. R. DeDeo [0000-0003-0956-1421] and Matthew Thomas [0000-0001-6511-3223]

University of North Florida, Jacksonville, FL 32224, USA
mdedeo@unf.edu

Abstract. Several algorithmic approaches to finding odd perfect numbers have
been attempted. This paper presents a novel open-access computational sandbox
to search for odd perfect numbers for the purpose of making observations that
could lead to new ways to search for OPNs and their properties. The development
environment used, based on Object Pascal, allows easy modification of the soft-
ware with cross-platform support for Windows, Mac, Linux, and mobile plat-
forms. In addition, the paper discusses the most current restrictions on OPNs,
other computational schemes and considers the difficulties described in working
with large numbers.

Keywords: Odd Perfect Numbers, Computational Sandbox, Large Number
Factorization

MSC: 11A25, 11A51

1 Introduction

Define σ(𝑁𝑁) to be the sum of the divisors of 𝑁𝑁. A number is considered perfect if
σ(𝑁𝑁) = 2𝑁𝑁. The first perfect number is 6 as σ(6) = 1 + 2 + 3 + 6 = 12 = 2(6).
The abundancy number of a perfect number, which is defined to be the ratio σ(𝑁𝑁)/𝑁𝑁,
is 2. Numbers for which this ratio is greater than (less than) 2 are called abundant (de-
ficient) numbers.

There is a slew of conditions that, if an odd perfect number existed, would have to
be satisfied. In 1888, Sylvester proved in a short, but clever, proof that an odd perfect
number (OPN) must have three factors. He then subsequently proved an OPN must
have at least four, and then five factors [16]. Define 𝜔𝜔(𝑛𝑛) to be the number of distinct
prime divisors of 𝑛𝑛 and Ω(𝑛𝑛) to be the total number of factors. Other conditions in-
clude:

• Form:
o 𝑁𝑁 = ℘𝛼𝛼𝑞𝑞1

2β1𝑞𝑞2
2β2 …𝑞𝑞𝑘𝑘

2β𝑘𝑘 where ℘, 𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝑘𝑘 are distinct
primes and ℘≡ α ≡ 1 mod 4 [6]

o 𝑁𝑁 is of the form 12𝐾𝐾 + 1 or 36𝐾𝐾 + 9 for some 𝐾𝐾 ∈ ℕ [18]

2

o 𝑁𝑁 is not divisible by 105 since 3, 5, and 7 cannot all divide 𝑁𝑁
[13]

o If for every 𝛽𝛽𝑖𝑖 , 𝛽𝛽𝑖𝑖 ≡ 1 mod 3, then 𝑁𝑁 is not an OPN [10]
o If for every 𝛽𝛽𝑖𝑖 , 𝛽𝛽𝑖𝑖 ≡ 2 mod 5 where 3|𝑁𝑁, then 𝑁𝑁 is not an OPN

[10]

• Lower Bounds:
o For the largest prime factor component 𝑝𝑝, 𝑝𝑝𝛼𝛼 > 1062 [15]
o ω(𝑁𝑁) ≥ 9 and ω(𝑁𝑁) ≥ 12 if 3|𝑁𝑁 [14]
o Ω(𝑁𝑁) ≥ 101 [15]

• Large Factors:

o 𝑁𝑁 > 101500 [15]
o Second and third largest primes are greater than 10,000 and 100,

respectfully [9, 10]
• Upper Bound:

o There are finitely many 𝑁𝑁 with a fixed number of distinct prime
factors [5]

o The largest prime factor 𝑝𝑝 of 𝑁𝑁 is less than (3𝑁𝑁)1 3⁄ [12]
o The second largest prime factor 𝑝𝑝 of 𝑁𝑁 is less than (2𝑁𝑁)1 5⁄ [9]
o The smallest prime factor of 𝑁𝑁 with all even powers lower than

six is less than exp(4.97401x1010) [20]

o 𝑁𝑁 ≤ 24(𝑘𝑘+1)−2(𝑘𝑘+1) [2]

Even before many of these conditions were determined, Sylvester insightfully wrote:

“…a prolonged mediation on the subject has satisfied me that the existence of any
one such – its escape, so to say, from the complex web of conditions which hem it on
all sides – would be little short of a miracle.” [16]

2 Computational methods for OPN conditions

Several algorithmic approaches to finding OPNs have been attempted. We describe
two as they offer insight into this project. In 2009, Nielsen implemented an algorithm
in Mathematica that was different than previous approaches to confirm that 𝑁𝑁 has at
least nine distinct prime factors such that ω(𝑁𝑁) ≥ 9 [14]. First, Nielsen fixed the
bound 𝐵𝐵 and did not let the bound increase with the algorithm. Instead, he increased it
manually only if needed as allowing a computer to vary 𝐵𝐵 automates the algorithm.
Unfortunately, it does so at the expense of unnecessary complexity. Second, he used a
lemma by Cohen [3] which allowed for stronger upper bounds on intervals for primes.
Lastly, he compiled a list of 11 contradictions, four of which were different than those
previously used.

3

Ochem and Rao used several algorithmic methods to navigate “roadblocks” that
they uncover while trying to prove a lower bound for 𝑁𝑁 [15] . They follow the ap-
proach of Brent et al. [1] with a method to by-pass roadblocks. With a minor modifi-
cation of these techniques and factorization methods, they show that 𝑁𝑁 must have at
least 101 factors and that 𝑁𝑁 must have a prime component 𝑝𝑝𝛼𝛼 greater than 1062.

To do this, they focus on the form of 𝑁𝑁 itself, the total number of prime factors of
𝑁𝑁 and its largest component. They then use factor chains which are constructed using
branching to forbid certain factors. The algorithm then forbids every prime less than
108 (as the largest prime factor must be greater than 108) using the following two
contradictions: the abundancy number being strictly greater than 2 and the current
number N has a prime power component greater than 1062. Although this method can
be extended past 101500, trying to search smarter proves to be difficult even with the
ability to check for all prime factors less than one billion.

3 Considerations for computational OPN searches

Here we present a novel open-access computational sandbox to search for odd perfect
numbers for the purpose of making observations that could lead to new ways to
search for OPNs and their properties. The development environment used for the ex-
periments described in this paper is Delphi which is based on Object Pascal which al-
lows for easy modification of the software with cross-platform support for Windows,
Mac, Linux, and mobile platforms.

Many computer languages have built-in integer data types that are limited to a
maximum precision that is far too small to work with numbers as large as 101500.
Without built-in support for large integers, as is the case with Delphi as of version
10.3, a third-party software library is needed. There are several options for big num-
ber libraries for Delphi, most of which are written in Object Pascal with inline assem-
bly optimizations. Unfortunately, they are not optimized for multiple platforms. It is
always desirable for software tools to be available on multiple platforms, but several
Object Pascal libraries for big numbers which are optimized for one platform (e.g.
Windows) perform very slowly on others (e.g. Mac OS and Linux). Another option is
to use a shared library which has bindings available for Delphi and which has optimal
performance for many platforms.

The GNU Multiple Precision Arithmetic Library (GMP) was ultimately chosen for
this project due to its flexibility and ease-of-use across platforms. GMP is a free li-
brary which provides the implementation for arbitrary precision integer, rational, and
floating-point arithmetic [7]. There is no practical limit to the precision, except for the
limitations implied by the available memory in the machine GMP runs on. In addi-
tion, GMP has a rich set of functions and its functions have a regular interface.

In order to examine the values of σ(𝑁𝑁)/𝑁𝑁 in decimal form, a computer language
also needs the ability to divide two extremely large integers and store the result as a
floating-point number that may or may not need an extremely large precision. If our
only interest is the integer part, e.g., we only want to know whether or not σ(𝑁𝑁)/𝑁𝑁 is
greater than, equal to, or less than two, then there is no need to do any floating-point
computations at all. If our only interest is a few (10 to 20) significant digits in the
floating-point output, then built-in floating-point data types may suffice. However, if

4

we want to compare two values of σ(𝑁𝑁)/𝑁𝑁 for different values of 𝑁𝑁, we need float-
ing-point precision of hundreds or even thousands of significant digits to detect the
difference. An example of this is described later where σ(𝑁𝑁)/𝑁𝑁 for different values
of 𝑁𝑁 have the same decimal digits for at least the first 200 digits.

4 Considerations for large number calculations

4.1 Computational Complexity

There are a large number of candidates for odd perfect numbers between 101500 and
101501 based on known properties of odd perfect numbers. Even when we find a can-
didate N, σ(𝑁𝑁) needs to be computed to verify that 𝑁𝑁, a very large number even for a
computer, is perfect or not.

Using a large integer library, a program was written to implement a method which
involves dividing 𝑁𝑁 by every odd number from 3 to √𝑁𝑁 and checking the remainder to
see if those numbers are divisors. It was immediately realized that this would take a
long time, thus the code was modified to do only one billion divisions and then measure
the amount of time it took. This revealed that a typical processor such as an Intel Core
i7, 10th gen, running at 1.3GHz can do approximately two million large integer divi-
sions per second at about 30% CPU capacity using one core.

Even if the code were modified to be multi-threaded in order to use 100% of its CPU
and further optimized, and assuming ten million divisions per second could be attained,
it would still take about 1.5 × 10726 years to compute 𝜎𝜎(𝑁𝑁) in this manner. This is
based on √101500 ÷ 2 = 5 × 10749divisions needed at a rate of 106 divisions per sec-
ond with one billion computers being used to split the work.

4.2 Computing 𝝈𝝈(𝑵𝑵)

Using known formulas, computing σ(𝑁𝑁) takes less than a microsecond if we know the
prime factorization of 𝑁𝑁. Performing a prime factorization of a larger number such as
𝑁𝑁 = 101500 + 1 based on the first 50,000,000 prime numbers can take about 30 sec-
onds to execute with the following divisors, none of which has a power greater than
one: 73, 137, 401, 1201, 1601, 24001, 32401, 1378001, 1676321, 31272001, 99990001,
and 113850001. After dividing 𝑁𝑁 by these numbers, the remaining factor is down to a
number with 1443 digits.

Computing σ(𝑁𝑁) for the above known prime factors is easy but computing σ(𝑁𝑁) for
the remaining factor may still be impossible with typical computing power. Using a list
of all prime numbers with nine digits or less, the resulting prime factorization of
𝑁𝑁 = 101500 + 1 only found a few more prime factors. For additional numbers N, fac-
toring N and determining its abundancy becomes even more complicated. Hence the
creation of the sandbox.

5

5 Considerations for computational OPN searches

To address the difficulties described in working with large numbers, we created the
OPN Sandbox (OPNS), a software tool which takes numbers already factored into
prime powers and displays a grid of properties that can be exported and analyzed. The
software's compiled executables for Windows and Mac OS are available on Github at
[17]. There is also a command-line version for Windows, Mac OS, and Linux available.

OPN Sandbox provides a visual interface that lets us "play" with numbers and make
observations. The heart of the software is the OPNS property processor (opnsprop)
which, given the prime factorization of a number, calculates several properties of the
number as they relate to OPNs. In addition to Linux, this functionality is built into the
main application for Windows and Mac OS platforms. It is also available as a com-
mand-line tool named opnsprop on those platforms.

There are several ways in which OPNS can be used. The first way is to load a list of
numbers, specified as prime powers, and have the OPN-related properties calculated
for each and displayed in a grid. The list of numbers can be entered in an input grid or
loaded via a comma-separated value (csv) file. As OPNS was being developed, the
original intension was to use OPNS was to allow others to prepare a list of numbers and
make them available to process. The expectation is that others can explore with their
own ideas about methods of choosing the prime powers, and then their lists of numbers
would be processed by OPNS to see what properties their numbers have. These lists
can be prepared by any tool that is able to save a plain text csv file (for example, Excel,
MATLAB, Python, etc.).

This is accomplished through the following process: each row of the input file rep-
resents the prime factors (and their powers) for a number with the form 𝑁𝑁 =
℘𝛼𝛼𝑞𝑞1

2β1𝑞𝑞2
2β2 …𝑞𝑞𝑘𝑘

2β𝑘𝑘. For example, let 𝑁𝑁 = 5532132172192232292312372412. An
example of an input row is: 5, 5, 3, 1, 13, 1, 17, 1, 19, 1, 23, 1, 29, 1, 31, 1, 37, 1, 41,
1, where the first number is ℘, the second is 𝛼𝛼, and following pairs of numbers repre-
sent 𝑞𝑞 and 𝛽𝛽 for each prime component 𝑞𝑞2𝛽𝛽. This example has ten distinct prime fac-
tors, but OPNS can accept more with no fixed limit. The number of rows is only limited
by available memory since OPNS loads the entire file into memory (although the com-
mand-line program opnsprop reads and process one row at a time, and thus has no limit
on the file size it can process).

The software then processes each row and computes and displays various properties
of each number. The properties checked are some of known properties of odd perfect
numbers. Not all known properties of OPNs are provided but more will be added as the
development of the software continues.

6

Fig. 1. Visual interface of the OPN Sandbox.

Figures 2a and 2b show an example of the output as displayed in Excel. The proper-
ties are shown in the header of each column. The output can then be exported as a plain
text csv file that can be analyzed by another software tool. One of the limitations of
Excel is that it is difficult to format the numbers to show more than a few (10 to 20)
decimal places.

The output file exported by OPNS, viewed in a text file viewer, shows that the last
column includes up to 200 significant digits for σ(𝑁𝑁)/𝑁𝑁, but these values are rounded
by Excel.

Fig. 2a. Example of the OPN Sandbox factorization output (Columns A through F)
displaying the factors of each N and its properties

7

Fig. 2b. Example of the OPN Sandbox factorization output (Columns G through N)
displaying each N's satisfaction of known conditionals

The second way OPNS can be used builds upon the first process: First, one or more

numbers can be entered or loaded in the input grid (the upper grid shown in Figure 1)
in prime power form, and the OPN-related properties are shown (the lower grid in Fig-
ure 1). We can then adjust the numbers by changing the prime factors (or exponents)
and see instant feedback in the re-calculation of the properties. The keyboard arrow
keys can be used to quickly move from one input grid cell to another. The number in
the selected cell can be edited directly. Additionally, keyboard shortcuts can be used to
increase or decrease the number in the grid cell in a way appropriate for the type of
number. If the number is in the column for ℘, the number is changed (increased or
decreased, depending on the keyboard shortcut pressed) so that the new number is a
prime number not already used as any of the other prime factors in that grid row and is
of the form 4𝐾𝐾 + 1. For 𝛼𝛼, the new number is also of the form 4𝐾𝐾 + 1. For any of the
𝑞𝑞’s, the new number is a prime number not already used as a prime factor in that grid
row. When OPNS selects the prime numbers in response to keyboard shortcuts, it gen-
erates the numbers using a simple prime number generator. A video description of the
paper and the process can be found online at [5].

There is another option that is useful when the prime numbers become large enough
that to generate the next prime number becomes noticeably sluggish. OPNS can load a
large pre-generated list of primes from a database. The database contains all prime
numbers which are 12 digits or less, however OPNS only loads a small portion (1000
numbers) at a time as needed. This option allows using keyboard shortcuts repeatedly
with almost no delay.

As we use OPNS to play with numbers and make observations, this leads to ideas
for further experiments. If an experiment involves an algorithm which is to be auto-
mated, then another way to use OPNS is as the visual interface for the algorithm after
it has been coded and made part of OPNS. This allows the algorithm to utilize any of
the features already built into OPNS. The algorithm has access to the routines which
calculate the OPN-related properties, access to the prime number database, generates

8

log files, and provides access to the routines which determines how to increase or de-
crease prime factors.

5.1 Observations from Sample Data

The sample input data used to generate the output in Figures 1, 2a and 2b are available
in the Github repository for OPNS [17]. Although the data imported to generate Figure
1 was arbitrarily selected, some interesting observations can be made from the output.

2.583041860510535108036352002877071435795249326261
2.674172051623086656780281505347020612394456779269
2.684005666081849539671557283926575510653299892257
2.685097111613254595822198478816780005837171143754
2.685218377673571768746477774497067200811200508912
2.685231851650193694322547042171733263972934384087
2.685233348758539196633488837962439494180024705543
2.685233515103909955198676402476144779685264815363
2.685233533586728922765512601519184075441188654620
2.685233535640375474684518751937993291961253132068
2.685233535868558424897548225783421693389501126878
2.685233535893912086032328137307847803117829144050
2.685233535896729159491748120736567156007128517841
2.685233535897042167653905896633245011386715702384
2.685233535897076946338590093954862460801700837669
2.685233535897080810636888338101707450169001503772
2.685233535897081240003365920784690218518977333048
2.685233535897081287710752318860577192731295836611
2.685233535897081293011573029757897967643486990738

Fig. 3. OPN Sandbox abundancy number from data in Fig. 1.

Using the input data generated by an Excel spreadsheet starting with the row men-

tioned in the previous section: 5, 5, 3, 1, 13, 1, 17, 1, 19, 1, 23, 1, 29, 1, 31, 1, 37, 1, 41,
1, another 499 rows were generated by incrementing α by 4 and incrementing all other
powers by 1 from one row to the next.

One pattern observed is that the two properties 𝑄𝑄2 ≡ 1 mod 16 and 𝑄𝑄2 ≡ 1 mod 32
where 𝑄𝑄2 = 𝑞𝑞1

2𝛽𝛽1 … 𝑞𝑞𝑘𝑘
2𝛽𝛽𝑘𝑘 is the perfect square portion of an odd perfect number, has the

repeated pattern: no/no, yes/no, no/no, yes/yes. Although we leave it for the reader to
explore the fairly easy explanation for this pattern given the form of the prime factors
of N, this observation demonstrates how patterns can be revealed.

Another interesting observation related to the data in Figure 1, which cannot be seen
in Excel, but is displayed in Figure 3. The last column of the Excel output displays the
abundancy number, 𝜎𝜎(𝑁𝑁)/𝑁𝑁. Notice that the list in Figure 3 has an increasing number
of decimal digits that are identical. Beyond the 207th row, at least 200 decimal digitals

9

repeat from one output row to the next. Again, another interesting observation which
can be explained by values of the ratio of 𝜎𝜎(𝑞𝑞𝑖𝑖

2𝛽𝛽𝑖𝑖)/𝑞𝑞𝑖𝑖
2𝛽𝛽𝑖𝑖 as βi increases for a fixed q.

5.2 Observations from playing with the numbers

While testing OPNS with one row of basic input, it is very easy to quickly reach a
point where we observer the transition of σ(𝑁𝑁)/𝑁𝑁 from above 2 to below 2, and vice
versa. We again start with the basic input corresponding to the number above:
 𝑁𝑁 = ℘𝛼𝛼𝑞𝑞1

2β1𝑞𝑞2
2β2 …𝑞𝑞11

2β11 = 5134112132172192232292312372412432 .
Note that this N is just a basic product of prime powers consisting of the distinct
prime factors that are consecutive from 3 through 41 (skipping 7), with small expo-
nents for the non-special primes (2 and 4). Changing the lower prime factors has a big
effect on σ(𝑁𝑁)/𝑁𝑁, but not as much change when the exponents are changed (as was
previously observed). We keep the two lowest prime factors, ℘ and 𝑞𝑞1

𝛽𝛽1, and keep all
of the exponents fixed. Then, starting with 𝑞𝑞2 , we replace 11 with 47, the next prime
factor not already used. We then we replace 13 with 53, the next prime factor not al-
ready used, and so on. Each time, we observe that σ(𝑁𝑁)/𝑁𝑁 decreases from approxi-
mately 2.89 to 2.68, then to 2.53, and so on. By the time we get to 𝑞𝑞11 and replace 43
with 89, σ(𝑁𝑁)/𝑁𝑁 has reached approximately 2.09.

Making a second pass starting again with 𝑞𝑞2 , replace 47 with 97 and repeat the
process. By the time we reach 𝑞𝑞7 and replace it, σ(𝑁𝑁)/𝑁𝑁 is now approximately
2.007. One more replacement, 𝑞𝑞8 , causes σ(𝑁𝑁)/𝑁𝑁 to go below 2. Replacing the
prime factors in this way amounts to a shifting frame of consecutive prime numbers
as demonstrated in Table 3 (with 𝑞𝑞2

2β2 …𝑞𝑞11
2β11 sorted).

These and other observations led to an idea for an algorithm with the goal of find-
ing numbers whose abundancy numbers get closer and closer to 2 and then making
observations from that experiment. Another algorithm is under development and new
ideas are surfacing which may lead to further revisions, but so far, the current algo-
rithm has found numbers on the deficient side with σ(𝑁𝑁)/𝑁𝑁 ≈ 1.999999999479. The
number itself, which is greater than 105442, has 704 distinct prime factors. On the
abundant side, another number N was found where σ(𝑁𝑁)/𝑁𝑁 ≈ 2.000000000134.

All of the approximations mentioned are actually displayed and logged by OPNS
to a precision of 200 decimal digits (which is the default precision of the OPN prop-
erty processor). This is a setting that it passes along to the GMP library which, as pre-
viously mentioned, can be configured with a precision of any degree only limited by
available memory.

Table 3. Shifting frame of prime powers.

℘𝛼𝛼 𝑞𝑞1

2β1 𝑞𝑞2
2β2 … 𝑞𝑞11

2β11 σ(𝑁𝑁)/𝑁𝑁

51 34 112 132 172 192 232 292 312 372 412 432 2.89
51 34 132 172 192 232 292 312 372 412 432 472 2.68
51 34 172 192 232 292 312 372 412 432 472 532 2.53
51 34 192 232 292 312 372 412 432 472 532 592 2.42

10

6 Future software development

We mentioned several observations which led to ideas for a revised algorithm that
is still in development. In the process of running the new algorithm, observations have
already led to new ideas additional modifications. We note that, in the scheme of
things, the existing algorithm looks at a relatively small set of numbers.
For example, to find the number N previously mentioned where σ(𝑁𝑁)/𝑁𝑁 ≈
1.999999999479, the algorithm examined only millions of numbers among more than
105442 numbers. Although the existing algorithm is purely automatic, we can expect
to move toward a machine learning algorithm to search for OPNs since intelligent de-
cisions made by the algorithm can be used to decide which numbers to examine.

In order to encourage others to explore this interesting problem, we note that OPN
Sandbox is written with the freely available Delphi Community Edition which is
based on Object Pascal. This makes it easy, even by novice coders, to modify and
customize the code. Delphi is capable of compiling a single base of source code into
cross-platform visual applications with support for Windows, Mac OS, iOS, Android,
and Linux. The portion of the OPNS code that makes up the OPN property processor
is written to not only compile under Delphi but also to compile by the Free Pascal
Compiler (FPC) which supports even more platforms. Both Delphi and FPC have
available libraries to make it easy to write applications which communicate over a
network. This choice conveniently sets programmers up to enable our applications
and algorithms to run as distributed processes among a variety of devices.

We also note that the existing algorithm lends itself to run as a distributed process
which opens the possibility to make it faster. As a next step, the greatest importance is
the ability to run a machine learning algorithm that can be distributed to accomplish
in a reasonable amount of time what a single-threaded process would accomplish in
many weeks or months.

11

References

1. Brent, R.P., Cohen, G.L., te Reile, H.J.J.: Improved techniques for lower bounds
for odd perfect numbers. Math. Comp. 57(196), 857-868 (1991).

2. Chen, Y.-G., Tang, C.-E: Improved upper bounds for odd multiperfect num-
bers. Bull. of the Australian Math. Soc. 89(3), 353-359 (2014).

3. Cohen, G.L.: On odd perfect numbers, Fibonacci Q. 16, 523–527 (1978).
4. DeDeo, Michelle, and Matthew Thomas. “In Search of Odd Perfect Numbers: A

Computational Sandbox.” YouTube, 12 May 2021, youtu.be/YFytb_5q7m0.
5. Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primal-

ity. Reprint, Dover, New York (2005).
6. Dunham, W., Euler, L: Euler: The Master of Us All. Math. Assn. of America,

Washington, DC (1999).
7. The GNU MP Bignum Library, 2020, gmplib.org/.
8. Goto, T., Ohno, Y.: Odd perfect numbers have a prime factor exceeding 108. Math-

ematics of Computation. 77(263), 1859–1868 (2008).
9. Iannucci, D. E.: The Second Largest Prime Divisor of an Odd Perfect Number Ex-

ceeds Ten Thousand. Math. Comput. 68(228), 1749-1760 (1999).
10. Iannucci, D. E.: The Third Largest Prime Divisor of an Odd Perfect Number Ex-

ceeds One Hundred. Math. Comput. 69(230), 867-879 (2000).
11. Iannucci, D. E. and Sorli, M.: On the Total Number of Prime Factors of an Odd

Perfect Number. Math. Comp. 72(244), 2077-2085 (2003).
12. Konyagin, S., Acquaah, P.: On Prime Factors of Odd Perfect Numbers. Intl. Jour-

nal of Number Theory 8(6), 1537–1540 (2012).
13. Kühnel, U.: Verschärfung der notwendigen Bedingungen für die Existenz von un-

geraden vollkommenen Zahlen. Mathematische Zeitschrift. 52, 201–211(1949).
14. Nielsen, P.: Odd Perfect Numbers Have at Least Nine Distinct Prime Factors.

Math. of Comput., 76(260), 2109–2127 (2007).
15. Ochem, P. and Rao, M.: Odd Perfect Numbers Are Greater than 150010 , Math.

Comput. 81(279), 1869-1877 (2012).
16. Sylvester, J.J.: Mathematical Papers, Vol. 4, Reprint, Chelsea, New York (1973).
17. Thomas, Matthew. “Mathprojects/OPNSandbox.” GitHub, github.com/mathpro-

jects/OPNSandbox.
18. Touchard, J.: On Prime Numbers and Perfect Numbers. Scripta Math. 19, 35-39

(1953).
19. Velthuis, Rudy: Mathprojects/DelphiBigNumbers. GitHub, github.com/mathpro-

jects/DelphiBigNumbers.
20. Yamada, T. "On the Divisibility of Odd Perfect Numbers by a High Power of a

Prime." 16 Nov 2005. https://arxiv.org/abs/math.NT/0511410.

https://www.amazon.com/exec/obidos/ASIN/0486442322/ref=nosim/ericstreasuretro
https://www.amazon.com/exec/obidos/ASIN/0486442322/ref=nosim/ericstreasuretro
https://arxiv.org/abs/math.NT/0511410

	1 Introduction
	2 Computational methods for OPN conditions
	3 Considerations for computational OPN searches
	4 Considerations for large number calculations
	4.1 Computational Complexity
	4.2 Computing 𝝈(𝑵)

	5 Considerations for computational OPN searches
	5.1 Observations from Sample Data
	5.2 Observations from playing with the numbers

	6 Future software development
	References

