THE FLORIDA ANTHROPOLOGIST

Volume 61 Number 3-4
September - December 2008

Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the Editors</td>
<td>119</td>
</tr>
<tr>
<td>Refining the Ceramic Chronology of Northeastern Florida.</td>
<td>123</td>
</tr>
<tr>
<td>Keith Ashley</td>
<td></td>
</tr>
<tr>
<td>Reexamining an Archaeological Survey of Big Talbot Island.</td>
<td>133</td>
</tr>
<tr>
<td>Keith Ashley and Robert L. Thunen</td>
<td></td>
</tr>
<tr>
<td>Jon C. Endonino</td>
<td></td>
</tr>
<tr>
<td>An Analysis of Seminole Artifacts from the Paynes Town Site (8AL366), Alachua County, Florida.</td>
<td>167</td>
</tr>
<tr>
<td>Jane Anne Blakney-Bailey</td>
<td></td>
</tr>
<tr>
<td>2008 Florida Field School Summaries</td>
<td>189</td>
</tr>
<tr>
<td>FAS 2008 Award Recipients</td>
<td>199</td>
</tr>
<tr>
<td>Obituaries</td>
<td></td>
</tr>
<tr>
<td>William M. Goza. Jeffrey M. Mitchem</td>
<td>205</td>
</tr>
<tr>
<td>Arthur R. Lee. George M. Luer</td>
<td>207</td>
</tr>
<tr>
<td>Book Reviews</td>
<td></td>
</tr>
<tr>
<td>Chang-Rodríguez: Beyond Books and Borders: Garcilaso de la Vega and La Florida del Inca.</td>
<td>215</td>
</tr>
<tr>
<td>John E. Worth</td>
<td></td>
</tr>
<tr>
<td>Simmons and Ogden: Gladesmen: Gator Hunters, Moonshiners, and Skiffers.</td>
<td>216</td>
</tr>
<tr>
<td>Hope Black</td>
<td></td>
</tr>
<tr>
<td>White: Gulf Coast Archaeology: The Southeastern United States and Mexico.</td>
<td>217</td>
</tr>
<tr>
<td>Wm. Brian Yates</td>
<td></td>
</tr>
<tr>
<td>Morrow and Gnecco: Paleoindian Archaeology: A Hemispheric Perspective.</td>
<td>218</td>
</tr>
<tr>
<td>Robert J. Austin</td>
<td></td>
</tr>
<tr>
<td>About the Authors</td>
<td>221</td>
</tr>
</tbody>
</table>

Cover: (Left) The St. Marys region of northeast Florida, (Top Right) a topographic map of the Thornhill Lake Complex, (Bottom Right) glass trade beads from the Paynes Town site. See articles for more information.

Copyright 2008 by the
FLORIDA ANTHROPOLOGICAL SOCIETY, INC.
ISSN 0015-3893
Big Talbot Island is a picturesque barrier island located along the Atlantic seaboard of northern Florida between the St. Johns and Nassau rivers (Figure 1). Much of the island still retains its natural allure, owing to the inclusion of more than 1700 acres within the boundaries of Big Talbot Island State Park. In March 1998 the University of North Florida (UNF) conducted a systematic shovel test survey of the southern third of Big Talbot Island (Ashley and Thunen 1999). As a result, one new and seven previously recorded archaeological sites were sampled and bounded. Now, a decade later, we return to the results of the UNF survey and review the findings from the perspective of a revised ceramic chronology for northeastern Florida (Ashley, this volume). Emphasis is placed not on individual sites per se but on the spatial distribution of shell refuse and diagnostic pottery types across the southern third of the island. These patterns are then examined to assess the nature, extent, and changes in aboriginal settlement of the southern third of Big Talbot Island during the Woodland, Mississippi, and Contact-Mission periods. Before turning our attention to the results of the UNF survey, we provide an environmental and archaeological overview of Big Talbot Island.

Big Talbot Island: An Environmental Overview

Big Talbot Island lies near the southern end of a chain of barrier islands that front the Atlantic Ocean from the St. Johns River, Florida north to the Santee River, South Carolina. Compared to other islands it is short and curved, measuring 7.1 km north-south and 1.2 km east-west at its widest point (Figure 2). These barrier islands surmount the continental shelf, a broad and gently sloping landform that extends seaward some 110 to 130 km into the Atlantic Ocean before making a steep descent (Clayton et al. 1992). It is on this stage that the creation, modification, and migration of barrier islands has and continues to play out, often in sync with rising and falling sea levels.

Most Atlantic coastal islands were formed by a combination of Pleistocene (ca., 10,000 – 2 million years ago) and more recent Holocene (ca., present – 10,000 years ago) processes. Sea level fluctuations over the past two million or so years have resulted in multiple, alternating episodes of rise (transgression) and retreat that have helped contour the barrier island system of northeastern Florida (Scott 1997:66-67). Barrier islands are dynamic landforms that grow, shrink, and constantly change shape and size through the combined actions of waves, winds, littoral currents, and intensive storms that erode, transport and deposit sediments (Clayton et al. 1992; FDEP 2004; Schmidt 1997:1). The current rise in sea level has caused many Atlantic coast barrier islands to migrate landward in recent times (Johnson and Barbour 1990:431). This is clearly evident in the northeastern part of Big Talbot Island, where shoreline erosion has reached the typically protected interior maritime hammock to form forested bluffs above the beach (FDEP 2004).

Landform elevations on Big Talbot Island range from sea level to as high as 6 m above mean sea level (amsl) at “The Bluffs” on the northern end of the island and at Half Moon Bluff on its eastern shore (FDEP 2004). On the southern third of the island, elevations are typically less than 3 m amsl. Big Talbot Island soils reflect the dynamic and changing nature of the island. Pedological analysis reveals that soils on the extreme southern and northern ends of the island are “unweathered and lack a soil profile,” indicating a more recent origin (deposited over the past 10,000 years) compared to those in other areas of the island (FDEP 2004). The primary soil type on Big Talbot Island is Cornelia fine sand (0-5 percent slopes), an excessively drained soil consisting of thick, sandy marine sediments found on rises and knolls (USDA 1998:84). Somewhat poorly and poorly drained soils mark flatwoods and other lower-lying areas on the island.

Big Talbot Island is part of the Nassau River Basin, which covers approximately 89 river km and 16 square km of estuary (FDEP 2004:21). The Nassau River, which empties into the Atlantic Ocean at the Nassau River Inlet, lies immediately north of Big Talbot Island and Fort George Inlet is to the south. The Intracoastal Waterway—a mostly estuarine lagoon system—separates Big Talbot Island and other barrier islands from the mainland to the west. Mud River splinters off the Intracoastal Waterway and runs along the southwestern edge of the island. Simpson Creek abuts the island at several points along its southeastern edge, whereas the Atlantic Ocean touches the island along its northeastern coast. Salt marshes fringe the entire western side and southeastern half of the island. Creeks and sloughs meander through these grasslands, which are flooded twice a day and support abundant fish and shellfish populations.

The oceanfront consists of wave-deposited upper beach and wind-deposited dunes aligned parallel to the shore and separated from one another by swales. Situated on the leeward
side of the dunes is a coastal strand or salt-tolerant maritime thicket environment that covers much of the eastern half of the island (FDEP 2004). The southern third of Big Talbot Island is mostly maritime hammock. Live oak is the dominant canopy tree often arching above a floor of resurrection fern. Laurel oak, cabbage palm, southern magnolia, hickory, and pine are mixed into the canopy. The subcanopy is marked by red bay and cherry laurel. However, all red bay trees on the island are dead having succumbed to the deleterious effects of the Asian ambrosia beetle. Southern red cedars also are common, particularly in areas of densely accumulated shell midden where the calcareous substrate fosters their growth. A variable density shrub and herbaceous layer covers the forest floor.

Within the area of the UNF archaeological survey, developmental impacts are limited. Most noticeable is a limerock covered and periodically maintained roadway
(Houston Road) that extends south off State Road A1A and runs down the approximate center of the southern third of the island. A roadside picnic area with a dirt access road lies along the southern side of A1A, a short distance east of Houston Road. Several privately owned parcels also exist along the western side of Houston Road.

Common wildlife indigenous to the maritime hammock of Big Talbot Island includes box turtle, gopher tortoise, opossum, raccoon, rabbit, gray squirrel, gray fox, and bobcat. Though no populations exist today, it is possible that white-tailed deer would have been able to access the island from the west in precolumbian times. The uplands and marshes also provide important habitat for numerous bird species. Exploitation of these mammalian, reptilian, and avian species along with the more abundant fish and shellfish inhabiting the salt marsh and estuarine waters formed the native’s breadbasket, as evidenced
by the recovery of countless bones representing an array of fauna species preserved in shell middens dispersed throughout the island.

Archaeological Investigations on Big Talbot Island

In 1894, Clarence B. Moore, a Philadelphian and part-time mound excavator, approached Spicer Houston about digging into two Indian mounds on his Big Talbot Island property. The exact verbal exchange between the two is not known, but Moore (1896) sums it up in the statement: “This gentleman values the right to investigate [the mounds] at one thousand dollars and is still the owner of undisturbed aboriginal earthworks.” The only information Moore provides on the mounds is that each was a symmetrical sand mound and that the two were situated about one-half mile apart on the southern end of the island. Although John Goggin (1952) never worked on Big Talbot Island, he did assign site numbers to the two Big Talbot Island mounds (8DU1 and 8DU2), presumably based on his reading of the C.B. Moore report.

Jones Investigations

The first formal archaeological work on the island was limited and took place in 1960, when William Jones, a local avocational archaeologist, began investigating colonial plantation sites. Three years earlier Jones had identified tabby ruins on Big Talbot Island and even formally recorded one historic site (8DU80). On his return visit in 1960 Jones (1988) examined a series of locations, three of which included tabby ruins. One of these, the John Houston Plantation (8DU90), is located within the southern third of the island. Also within the UNF survey area he examined three “sites with no visible ruins” that he designated Sites A-C (Jones 1988:9-15).

Most of Jones’s efforts focused on extant tabby ruins associated with the nineteenth century Houston Plantation (8DU90) and involved mapping and surface reconnaissance. No subsurface testing was performed in this area. South of the ruins, in a location he labeled Site A (still part of 8DU90), Jones (1988:9) collected “a number of Spanish Olive Jar fragments…two fragments of majolica and a few San Marcos potsherds” from the surface of a dirt road. According to Jones, Goggin identified one of the majolica sherds as Fig Springs Polychrome, which dates to the early seventeenth century. A 1.5 m square excavated adjacent to the road yielded “nothing of historical value” (Jones 1988:9). Based on the surface collected pottery, Jones suggested that Site A was the location of the early seventeenth century visita of Sarabay, a satellite village associated with the mission San Juan del Puerto on nearby Fort George Island.

The “second site [Site B] with no visible ruins” was situated within the roadside park east of the intersection of A1A and Houston Road. This area previously had been recorded by Jones as 8DU80 (Big Talbot Island site). A variety of eighteenth century materials along with 16 aboriginal potsherds was surface collected, but no subsurface testing was performed. Pottery included 4 St. Johns Plain, 8 St. Johns Check Stamped, and 4 grit tempered sherds that suggests a St. Johns II component.

Another area investigated by Jones was “Site C” (eventually considered part of 8DU631), which was located adjacent to a dirt road near the Mud River landing (Jones 1988:13-15). This road, which was in use during Jones’s investigation, is not part of present-day Houston Road. A number of historic sherds were found in the soft sand of the road. Jones excavated a 1.5 m square along the east side of the road as well as an undisclosed number of shovel tests; the area also was scanned with a metal detector. The majority of artifacts dated to the late eighteenth century, and Jones speculated that the materials might represent a “dwelling house” associated with one of the five families mentioned in a 1783 British census. Intermixed with the historic artifacts were 3 San Marcos, 2 sherd tempered, 2 sand tempered, and one grit tempered sherd. Jones’s (1988) surface survey, limited testing, and historical research represent an important contribution to our basic understanding of the island’s history.

DHR Investigations

In the summer of 1974 Lynn Nidy of the Florida Division of Archives, History, and Records Management (now the Florida Division of Historical Research or DHR) visited Big Talbot Island as part of an archaeological and historic architectural survey of selected areas of Duval County (Nidy 1980). The objectives of the archaeological survey were to relocate as many previously recorded sites as possible and to survey accessible areas along or near the St. Johns River for the presence of unrecorded archaeological sites. With William Jones as his guide, Nidy apparently walked the dirt roads and trails on the southern end of Big Talbot Island and revisited two previously recorded sites (8DU2 and 8DU80) and documented five new sites (8DU627-8DU631). Nidy’s investigation involved no subsurface testing, so fieldwork was limited to surface inspection. Although spatial boundaries were given for each site, they were tenuous and apparently based on the general distribution of collected artifacts and observed shell.

As a follow up to Nidy’s work, Kathy Jones of DHR returned to 8DU1, which was subsequently named the Grand site. Nidy certainly visited this site and completed a state site form, but it is inexplicably omitted from his 1980 report. The site consists of a shell ring and associated sand mound and is most likely one of the two sand mounds mentioned by Moore. Testing by Jones was limited to a single one-meter square dug into the northern part of the shell ring to gather an artifact and faunal sample. The unit revealed a 45-cm thick shell midden, consisting mostly of oyster and clam shells with abundant fish and turtle bones along with St. Johns II pottery. After formal nomination, the Grand site was listed in the National Register of Historic Places in 1975. The Grand site has been the subject of recent excavation, which has dated its construction to the St. Johns II period (Ashley and Thunen 1999:33-38; Ashley et al. 2007).

University of North Florida Survey

Armed with a 1A-32 Archaeological Research permit from the Florida Bureau of Archaeological Research and supported by a Small Category Matching Grant from DHR, UNF
archaeologists undertook a shovel test survey of the southern third of Big Talbot Island, an area of approximately 450 acres. The objectives of the project were straightforward: to locate, and in some instances relocate, all archaeological sites south of the intersection of Houston Road and SR A1A and to provide Big Talbot Island State Park with cultural information, spatial boundaries, and management recommendations for each site. Fieldwork took place between March 9 and May 8, 1998.

It was anticipated that, except for an area of poorly and very poorly drained soils in its southeastern section, the entire project area would need to be subjected to intensive shovel testing. The survey began at an arbitrary point (5000N/1000E) located near the tabby ruins at the Houston Plantation site (8DU90). A shovel test grid radiated out from this point along the four cardinal directions. Except for low and wet areas, a few privately owned parcels, and a historic cemetery, the project area was tested on a staggered 25-m grid. Four additional tests were dug north of A1A, outside the project area, to gather information on the northern extent of site 8DU80. All shovel tests measured 50 cm square, and soil was screened through 6.35 mm (1/4") hardware mesh. The volume of recovered shell from each shovel test was measured in liters before being discarded, and attempts were made to document the variety of shellfish species and estimate their frequencies. Pertinent environmental and cultural data were recorded for each shovel test.

The UNF survey resulted in the excavation of 550 shovel tests, of which 351 (63.8%) yielded cultural material (Figure 3). As a result, one new archaeological site (8DU13260) and seven previously recorded sites (8DU1, 8DU80, 8DU90, 8DU627-8DU629, 8DU631) were located, sampled, and bounded. The recorded location of a mound (8DU2) Nidy suspected was one of the two mentioned by C.B. Moore was relocated, but upon further investigation this particular mound does not appear to be an aboriginal earthwork (Ashley and Thunen 1999:38-39). In addition, 8DU630, which was tersely described by Nidy, was determined to be indistinguishable from 8DU631, so after consultation with the Florida Master Site Files the site designation 8DU630 was eliminated in favor of 8DU631. Finally, a nineteenth/twentieth century cemetery (8DU1549) was inspected and photographed, but no shovel testing was performed (Figure 4).

Results of UNF Survey

Ceramic Distributional Analysis

The following distributional analysis is based on the results of the 1998 UNF survey. The vast majority of artifacts recovered during shovel testing date to the late precolumbian, mission, and plantation periods. In fact, no Paleoindian or Archaic artifacts were found and only a small amount of material from the Woodland period was recovered. With regard to aboriginal materials, pottery was the most prevalent artifact class and provides the best information on when and where past activities occurred. In fact, nonceramic artifacts were limited to a handful of whelk tools, 13 lithic artifacts, and one piece of worked bone. A total of 2397 potsherds was recovered, of which 1240 (51.7 percent) were larger than two centimeters and subjected to detailed ceramic analysis. Sherd identifiable to pottery type included Deptford, Swift Creek, St. Johns II, St. Marys II, San Pedro, and San Marcos series wares. Those not meeting distinct pottery type criteria were classified by surface treatment and temper; the later included fine sand tempered, medium sand tempered, and grit tempered. Sand tempered refers to sherds with quartz inclusions between .125 and 1.0 mm in size, whereas grit tempered denotes the presence of quartz particles between 1.0 - 2.0 mm. Sand tempered was further subdivided into two size categories: fine (.125 - .5 mm) and medium (.5 – 1.0 mm).

Table 1 lists and enumerates the various pottery types from each site, while Table 2 provides basic site information. Conventional narrative descriptions of these sites can be found in Ashley and Thunen (1999:31-55). In the following, we will forego traditional distributional analysis by individual site and focus on the dispersal of diagnostic pottery types across the broader sampling universe (i.e., southern third of Big Talbot Island). In fact, many of the site boundaries are arbitrary and based on brief breaks in artifact occurrence or denial of land access. The systematic distribution of shovel tests across the southern third of the island allows a glimpse into aboriginal habitation and refuse discard patterns. As depicted in Figure 3, however, some areas were sampled on a 25-m grid, whereas other locations were tested on a staggered 25-m grid resulting in a somewhat uneven distribution of shovel tests. But complete coverage of the survey area was accomplished.

The following discussion is facilitated through the use of ceramic distribution maps generated by Surfer™ mapping program. Because of the uneven nature of shovel testing, we decided not to use ceramic density contour maps since such plots would have interpolated values between data point (i.e., shovel tests) separated by distances of 25 m or more, thus possibly obscuring the reality of pottery distributions. Thus we chose to depict graphically sherd weights for each shovel test by individual pottery types (or ceramic series) and not interpolate values between them. By focusing on the broader distribution of pottery we should obtain a better picture of settlement structure enabling us to identify shifts and infer land use patterns during different periods of native occupation of the southern third of the island.

Woodland Period (500 B.C. – A.D. 900)

Diagnostic Woodland period pottery was limited to only 14 sherds, 10 Deptford and 4 Swift Creek. It is likely that some of the sand and/or grit tempered plainwares associated with (or recovered near) these decorative types also date to the Woodland period. With respect to Deptford pottery, two isolated sherds were found along the west side of the island (one at 8DU90 and one at 8DU631). The remaining 8 sherds were recovered from 8DU629 and 8DU13260, on small points of land that extend into the salt marsh in the southeastern part of the survey area. The sparse occurrence of Deptford ceramics on the southern end of Big Talbot Island suggests that Early Woodland occupations were brief encampments or short-term procurement ventures that took place between 500 B.C. and A.D. 200. The same can be said for the Late Woodland Swift Creek period, represented by 4 sherds sprinkled across a
narrow east-west band near the center of the survey area that
crosscuts sites 8DU627 and 8DU631. All Swift Creek sherds
appear to be of the late variety suggesting an A.D. 500 to 850
timeframe.

St. Johns II Phase (A.D. 900-1250/1300)

Sponge spicule tempered St. Johns pottery (n=500) was recovered from all sites, save for 8DU13260. It was the most common pottery series recovered during the survey, accounting for slightly more than 40 percent of the total ceramic assemblage (see Table 1). In northeastern Florida, St. Johns Plain and Check Stamped pottery, the most dominant types within the survey area, mark the local St. Johns II phase. These wares, however, can occur as minority types on early St. Marys II sites and even later mission period sites in the region. This opens up the possibility that some of the St. Johns Plain and Check Stamped sherds, especially those from areas where appreciable amounts of St. Marys Cordmarked or San Pedro ceramics were recovered, might date to either the later St. Marys II or San Pedro phases, respectively. Finally, two additional pottery types clearly associated with the local St. Johns II phase include grit tempered Ocmulgee Cordmarked (n=15) and spicule tempered Little Manatee (n=8). The latter included zone and shell stamped varieties.

As shown in Figure 5, St. Johns pottery was most prevalent in shovel tests on the eastern side of the survey area (at 8DU1, 8DU90, and 8DU627) and at the southern tip of the island (8DU628). While recovered from shovel tests west of Houston Road at sites 8DU90 and 8DU631, its ceramic density was markedly less. Within its extensive distribution are several concentrations containing densely deposited shell, vertebrate animal bone, and St. Johns Plain and Check Stamped, Little Manatee, and Ocmulgee Cordmarked pottery types. The most conspicuous St. Johns II feature on the island is the Grand site (8DU1), a shell ring and burial mound complex (Ashley and Thunen 1999:33-38). This one-of-a-kind piece of St. Johns II architecture has been the scene of recent excavation and securely dated to the period A.D. 900-1250 (Ashley et al.
Located near grid point 4600N/1450E in Figure 5, the Grand Shell Ring appears to represent a major St. Johns II phase ceremonial center of regional importance. The largest apparent concentration of St. Johns II pottery lies north of the Grand Shell Ring (Ashley and Thunen 1999:39-42). While shell density varied, a more than 100 meter long and 50-75-m wide band of dense shell midden, that included several distinct shell heaps, was encountered along the northern and western margins of the cove at site 8DU80 in the far northeastern part of the survey area. Another concentration is Area A of the Middle Midden (8DU627), which is located about 100 m west-southwest of the Grand Shell Ring (near grid point 4500N/1200E). There, covering an area of approximately 60 m in diameter, are a series of mounded ridges and other irregular shaped heaps evincing signs of previous digging, likely the result of past shell-mining activities (Ashley and Thunen 1999:46). A final clustering of St. Johns II pottery appears at the southern tip of the island where St. Johns pottery occurred in association with far less shell than in the concentrations to the north.

St. Marys II Phase (A.D. 1250/1300-1450)

St. Marys Cordmarked (n=132) pottery was widely dispersed across the northern part of the survey area, but limited to only two shovel tests in the southern half (Figure 6). The results of shovel testing indicate a mostly low to moderate density distribution, with 75 percent of the shovel tests in
Figure 6 containing less than 10 g of St. Marys Cordmarked pottery. A few high density (more than 25 g) shovel tests were encountered in the west-central (8DU631) and northeastern (8DU80) sections of the survey area. Compared to the dispersal of St. Johns pottery, St. Marys wares were more prevalent west of Houston Road.

Within the Big Talbot Island ceramic collection, cordmarked wares demonstrated a wide range of paste characteristics. In order not to obscure or conflate culturally or temporally distinct pottery types, fine sand, medium (coarse) sand, and grit tempered cordmarked sherds were distinguished and quantified separately. The grit tempered specimens were clearly Ocmulgee Cordmarked, which is associated with local St. Johns II assemblages, whereas the fine tempered cordmarked matched the type description for St. Marys Cordmarked. The medium sand tempered cordmarked sherds were more problematic. Were they part of the range of variation within the St. Marys type or were they affiliated with San Pedro assemblages? It is also worth noting that many of the medium sand tempered wares had wider cordage impressions than the St. Marys specimens.

Figure 7 displays the distribution and density of medium sand tempered cordmarked pottery (n=80) across the survey area. It too has a mostly low frequency spread, with more than...
eighty-three percent of the shovel tests in Figure 7 containing less than 10 g. As was the case with St. Marys, medium sand tempered cordmarked wares were most common in the northwestern part of the survey area; however, it was a little more abundant in the extreme southern part of the survey area than St. Marys While not always in the same shovel tests, St. Marys and medium sand tempered cordmarked sherds occurred mostly in the same general areas suggesting some degree of association.

San Pedro (n=166) is a distinctive grog-tempered pottery made by aboriginal groups in northeastern Florida and southeastern Georgia during the late fifteenth through early seventeenth centuries (Ashley 2009; Ashley and Rolland 1997). The paste reveals frequent crushed sherds (grog) within a fine to coarse sand paste. The coarse paste of some of the San Pedro sherds closely resembled that of the medium sand tempered cordmarked category. As a tempering agent, grog has been refired, therefore its texture often appears denser and

Contact and Mission Periods (A.D. 1450-1702)
more vitrified than the surrounding clay body. In the Big Talbot collection a great variety of grog sizes and frequency was observed. Unlike Late Woodland-period Colorinda pottery, San Pedro grog rarely contains sponge spicules. Surface treatments found on San Pedro specimens from the project area included plain, bold check stamped (unlike that found on St. Johns pottery), textile (or fabric) impressed, cordmarked, cobmarked, and complicated stamped. Any surface treatment may reveal areas of intentional obliteration.

San Pedro wares had the most widespread distribution of any pottery type in the survey area (Figure 8). Of the 71 shovel tests that yielded San Pedro pottery, 40 (56.3 percent), yielded less than 10 g and 31 (43.7%) produced weights greater than 10 g. Of the latter, five contained more than 25 g of San Pedro pottery. Although widely scattered, high density clusters are apparent throughout the survey area. The core area was located at the Armellino site (8DU631), between approximately 4000 and 4300 North, slightly inland from where Mud Creek abuts the island. While the density of San Pedro pottery is slightly higher on the western side of Houston Road, present distribution data suggest that the island's protohistoric through mission period settlement was dispersed over a broad area.

In addition to San Pedro pottery, mission-period activities on the island are represented by San Marcos (n=67) ceramics. San Marcos, also known as Altamaha, is a grit-tempered ware that appears to date to the seventeenth century in northeastern Florida. Quartz temper ranged from rare to abundant grit-sized inclusions. Surface decorations associated with this series included plain, simple stamped, cross simple stamped, line blocked, and complicated stamped. Some sherds possessed...
a distinctive rim decoration consisting of a series of circular punctations. The horizontal spread of San Marcos pottery was grossly similar to that of San Pedro, but it was far less frequent, particularly at sites on the eastern side of Houston Road (Figure 9). A single olive jar fragment, along with San Pedro and San Marcos sherds, was recovered from a shovel test near the southern tip of the island at 8DU628. This is believed to be the location of a mission-period ferry landing operated by local natives, which linked Big Talbot Island to Fort George Island and the mission San Juan del Puerto.

Block excavations conducted at the Armellino site (8DU631) by UNF helps shed some light on the island’s contact and mission period occupation. An excavation area consisting of 23 contiguous 1 X 2 m units produced large amounts of San Pedro and San Marcos pottery along with a handful of Spanish olive jar sherds (Thunen 1999). Preserved corn cob fragments were recovered and an assortment of features and postholes were revealed suggesting a domestic activity area with structures. San Pedro and San Marcos wares were mixed within the upper excavation levels, although only San Pedro wares—and in a few contexts olive jar—were recovered from subsurface features. Historic and archaeological evidence points to the southern third of Big Talbot Island as the location of the contact village and visita of Sarabay (Ashley and Thunen 1999:14, 52-54: Jones 1988; Thunen 1999).

Shell and Refuse Disposal Patterns

With the ceramic discussion complete, let us turn to the distribution of shell refuse across the survey area and how it relates to past cultural groups. With respect to shellfish species, oyster was by far the predominant species encountered...
throughout the southern third of the island, and minority species composition varied by context. Typically, quahog clam, stout tagelus, and Atlantic ribbed mussel were the most common minority species, but eastern mud nassa, giant Atlantic cockle, sharkeye, Carolina marsh clam, and whelk also were recovered. In most instances, loci of high density shell midden throughout the surveys area were replete with preserved vertebrate animal bones.

Shell was recovered from 384 (86.9 percent) of the 442 shovel tests associated with archaeological sites (Table 3). The amount of shell per shovel test ranged from a few fragments to more than 200 liters (l). More than sixty percent of the shovel tests yielded no shell or less than one liter of shell. Furthermore, shovel tests producing 50 l or more of shell were limited to seven tests in three general areas. Two of these, yielding 225 l and 198 l, were associated with the mounded shell ring at 8DU1. Three additional tests that each produced more than 50 l of shell derived from the mounded shell midden that corresponds to Area A of 8DU627 near the center of the island. The final two tests were placed within a moderate to dense band of shell midden spread along the upland edge of a cove, immediately south of A1A at site 8DU80. On average at least 10 l of shell were recovered from each shovel test dug at 8DU80. In addition, untested shell heaps were identified at

Figure 9. Distribution of San Marcos series sherds by weight (grams).
this site, and a reconnaissance conducted on the northern side of A1A indicated the presence of additional shell mounds (see endnote 1).

The densest shell deposits were encountered on the eastern side of Houston Road, and almost without exception all were associated with St. Johns II phase pottery types. Shovel tests dug on the western side of the island more often yielded later St. Marys II, San Pedro, and San Marcos pottery types and far less shell. While this distribution could suggest that St. Marys II and contact-mission phase inhabitants of the island did not exploit shellfish as intensively as earlier St. Johns II groups, regional settlement pattern data suggest that another explanation appears more likely. As discussed below, we suggest that the patterning of shell within the southern third of the island reflects different refuse disposal patterns associated with culturally distinct groups combined with post-depositional disturbances.

In the St. Marys region of northeastern Florida and southeastern Georgia, many late precolombian St. Marys II and contact-mission period San Pedro sites are manifested as a constellation of discrete circular to oval piles of shell midden, each measuring ca. 2-15 m in diameter and anywhere from 10 cm to more than 1 m in height (see Ashley 2008 for an overview). These shell deposits are frequently interpreted as the refuse of individual households. Long-term use or reuse of sites typically resulted in the formation of new individual shell heaps, thus increasing the horizontal extent of the site. For example, at the Quercus site (8DU628), a repeatedly occupied St. Marys II site on the north side of the St. Johns River, individual shell deposits measuring less that 10 m in diameter, are dotted over an area of approximately 9 hectares (Ashley 1997; Ashley and Chance 1995).

In contrast, St. Johns II sites are more often described as diffuse “sheet shell middens” or larger “consolidated shell middens” ranging from thin scatters to a depth of a meter or more (Ashley 2003; Johnson 1988; Milanich 1994:245; Russo et al. 1993; Sears 1957). Thus, at continuously and/or repeatedly occupied St. Johns II period sites, distinct refuse deposits were consolidated over time to form thick, continuous shell middens that in some instances display themselves as linear ridges or arcs that rise above ground surface.

At some sites, however, refuse patterning is masked and not readily identifiable due to extensive site reuse by many different cultural groups over an extended period of time. Moreover, post-depositional activities such as historic agriculture have marred or even erased signature patterns of native refuse disposal. In fact, the effects of such ground disturbing activities should vary depending on the density and spread of shell in the refuse accumulations. In theory, agricultural plowing should inflict more damage on St. Marys II and San Pedro sites with their small, scattered mounds than on St. Johns II sites containing a more consolidated and continuous concentration of shell midden.

With regard to the western half of the survey area, few piles, heaps, or mounds of intact shell midden refuse were observed during transect shovel testing, although a high frequency of St. Marys II and San Pedro pottery was recovered. This part of the island was intensively farmed.
throughout the nineteenth century by the Houston family and others. Thus, past agricultural activities may have resulted in the leveling and dispersal of formerly discernible shell heaps. Consequently, the present landscape does not reflect that of the late precolumbian period. In the absence of discernible shell heaps, small individual middens may be difficult to locate and identify in wooded areas via shovel testing at intervals of 25 m or more, as was the case during the UNF survey. Still the spotty and localized nature of sampled shell midden deposits revealed during shovel testing at 8DU90 and 8DU631 suggest St. Marys II and San Pedro refuse disposal patterns. Such an interpretation was borne out at 8DU631, where block excavations exposed small shell middens and activity areas believed to be associated with the *visita* of Sarabay (Thunen 1999).

Discussion and Conclusions

To date, no evidence of Paleoindian (ca. 10,000+ - 8000 B.C.) or Archaic (8000 - 500 B.C.) period activities has been uncovered within the southern one-third of Big Talbot Island. However, Archaic period artifacts (e.g., projectile points) have been found at site 8DU106 on the northeastern shore of the island in the vicinity of Black Rock as well as to the south on Fort George Island. The reason for the lack of early aboriginal occupations in the present project area may be due to the geomorphology of the island. That is, the southern portion of the island may be a more recent coastal formation that precluded occupations prior to ca. 500 B.C. Artifacts recovered during the present survey indicate that the southern one-third of the island was first occupied during the Woodland period, sometime after 500 B.C. But even during the Woodland period, habitation was sparse and of short duration, perhaps a reflection of the instability of the salt marsh ecosystem at the southern end of the island at that time.

Intensive occupation of the survey area began with the St. Johns II phase, around A.D. 900. St. Johns pottery covers much of the southern third of the island. Significant St. Johns II phase deposits include the shell ring and midden complex at the Grand site (8DU1); an amorphous cluster of shell heaps and ridges in Area A of the Middle Midden (8DU627); and thick oyster shell-dominated refuse deposits along the cove at the Big Talbot site (8DU80). In addition, areas of scattered shell and artifacts that include St. Johns II wares occur within the boundaries of the Middle Midden and Big Talbot Island sites as well as at the Reid site (8DU628) at the southern tip of the island. There is no doubt that these areas are grossly contemporaneous and date to the local St. Johns II phase (A.D. 900-1250/1300), but their precise relationship to one another in time and space is uncertain at this time. It is possible that a permanent St. Johns II community resided at the southern end of Big Talbot Island (Ashley et al. 2007). During the St. Johns II phase, household locations may have moved about the landscape but remained tethered to the Grand Shell Ring which served as the community’s ritual and mortuary center.

Subsequent St. Marys II occupations (ca. A.D. 1250/1300-1450) appear to have been more common on the western side of Houston Road, although substantial evidence of habitation occurs in the northeastern corner of the survey area mixed with earlier St. Johns II and later San Pedro phase refuse. Based on shell midden data, St. Marys settlements appear to have been characterized by the deposition of small individual household middens, although this patterning has been obscured to some extent by past land clearing activities on Big Talbot Island. In contrast to the thin, fine sand tempered St. Marys Cordmarked, thicker cordmarked sherds with coarse sand tempering and wider cordage impressions were recovered. In terms of both technology and style, these wares fall between classic St. Marys II and San Pedro types. Based on these attributes and considering the distribution of these pottery types across the southern end of Big Talbot Island, we suggest that the “medium sand tempered cordmarked” wares are part of a transitional St. Marys II – San Pedro assemblage, perhaps dating to ca. A.D. 1400-1500. In fact, some of the San Pedro sherds exhibited the same coarse sand tempering observed in the transitional cordmarked wares. This situation has been observed at several other sites in the region (Ashley 2009).

San Pedro pottery, an archaeological correlate of the contact and early mission era Mocama-speaking Timucua, was more widely distributed across the survey area than any other ceramic type/series. The production of classic San Pedro pottery began around A.D. 1450 and continued to be made into the early 1600s, at which time it was replaced by the local manufacture of San Marcos/Altamaha wares. Based on available archaeological, cartographic, and documentary evidence, we suggest that the contact village and late sixteenth-early seventeenth century *visita* of Sarabay was located at the south end of Big Talbot Island. The main part of the village may have been located along the southwestern edge of the island, parallel to Mud Creek, which would have provided watercraft access to the Intracoastal Waterway. However, households appear to have been widely scattered across the southern third of the island.

In conclusion, the southern third of Big Talbot Island was the scene of transitory occupations during the Woodland period, repeated and intermittent encampments and procurement activities during the St. Marys II phase, and the creation of more settled village-like communities during the St. Johns II phase and later contact-mission periods. These settlement trends seem to echo what was going on throughout northeastern Florida. Big Talbot Island represents an ideal research arena because the sites still maintain untapped potential to explore important questions regarding issues of material culture, community layout, regional settlement patterns, and subsistence pursuits to name a few. It is hoped that this study is a mere first step in a long term archaeological investigation of the southern third of Big Talbot Island.

Notes

1. Archaeological testing recently took place north of A1A at 8DU80 as part of an archaeological survey of the proposed Timucuan Multi-use Trail. Initial shovel testing (Anderson-Waters et al. 2005) and subsequent unit
excavations (Klein et al. 2006a, 2006b) sampled shell midden and non-shell loci that contained abundant St. Johns II pottery.

Acknowledgments

The UNF survey of the southern third of Big Talbot Island was funded in part with a Small Category Matching Grant from the Bureau of Historic Preservation, Division of Historical Resources, Florida Department of the State and we thank them for their financial assistance. Bob Joseph, Park Manager of Talbot Islands State Park, is commended for his help with the project as well as his continued support of our research on the island. Numerous people helped out in a variety of ways and we wish to thank them all: Heather Shuke, David Nelson, Laura Holton, Charles Potter, Mike Tarlton, Dave Bishop, Jim Freels, Bob Richter, Jeff Will, and the Armellino family. Thanks also to Greg Hendryx and Deborah Mullins for their editorial comments. Finally, we especially want to extend our deep appreciation to Vicki Rolland, whose hard work in the field and laboratory contributed immensely to the success of the project.

References Cited

Anderson Waters, Jamie, Gifford J. Waters, and Lucy B. Wayne

Ashley, Keith H.

Ashley, Keith H., and Marsha A. Chance

Ashley, Keith H., and Vicki L. Rolland

Ashley, Keith H., and Robert L. Thunen

Ashley, Keith, Vicki Rolland, and Rochelle Marrinan

FDEP (Florida Department of Environmental Protection)
2004 Big Talbot Island State Park and Little Talbot Island State Park Unit Management Plan. Florida Department of Environmental Protection, Tallahassee.

Goggin, John M.

Johnson, Robert E.

Johnson, Ann F., and Michael G. Barbour

Jones, William
1988 A Report on Big Talbot Island, Duval County, Florida Ms. on file, Archaeology Laboratory, University of North Florida, Jacksonville.

Klein, Rebecca, Martin F. Dickinson, and Lucy B. Wayne
2006a Archaeological Site Assessments, Talbot Island Site and Talbot Tip Site, Timucuan Multi-use Trail, Duval County Florida. On file, Division of Historical Resources, Tallahassee.
2006b Addendum to: Archaeological Site Assessments, Talbot Island Site and Talbot Tip Site, Timucuan Multi-use Trail, Duval County Florida. On file, Division of Historical Resources, Tallahassee.
Milanich, Jerald T.

Moore, Clarence B.

Nidy, Lynn S.

Russo, Michael, Ann S. Cordell, and Donna L. Ruhl

Scott, Thomas M.

Schmidt, Walter

Sears, William H.

Thunen, Robert L.

USDA