![]() ![]() |
||||||||||
|
||||||||||
|
||||||||||
MinV and MVP College Football Rankings |
||||||||||
Performance
|
||||||||||
Below is an assessment of the ranking systems posted on Kenneth Massey's ranking compilation page for this season. Using a simple form of Data Envelopment Analysis and software from Holger Scheel, each system is given an efficiency score representing how close its combined retrodictive and predictive performance is to the efficient frontier. Retrodictive performance is measured by the number of past head-to-head results that were correctly matched by the weekly ranking (the first number in the "Retrodictive" column below), while predictive performance is measured by the number of games in the following week that were correctly predicted (the first number in the "Predictive" column below). If one were to plot each system's performance, with retrodictive performance on one axis and predictive performance on the other, the efficient frontier would be formed by the most extreme systems in all possible directions. The efficient frontier approach is an arguably fair way to compare ranking systems regardless of whether they focus on retrodictive or predictive performance (or some combination thereof). The approach determines the implicit weight that a system places on each objective, and uses these weights (shown in parenthese below) to determine the appropriate comparison point on the efficient frontier. Each system is thus evaluated only against peers with a similar combination of objectives. Any system with 100% efficiency is on the efficient frontier, meaning that if the weights noted for that system are applied, no other system surpasses it. If a system has an efficiency less than 100%, then even if the weights noted for the system are applied, there is at least one other system (or a linear combination of other systems) whose performance is better. Columns can be sorted from high to low by clicking on the column header. Results shown are for games on or before December 2, 2017 using rankings posted through the games of the respective preceding week. Note that the system abbreviations are the same as those used by Massey, who denotes the MinV ranking as "CMV" and the MVP ranking as "MVP." |
||||||||||
Full Season Last Week
Rnk System Efficiency Retrodictive Predictive Efficiency Retrodictive Predictive
1 CMV 100.0% 4577 (.950) 536 (.050) 100.0% 662 (1.00) 11 (.000)
2 RTB 93.31% 4271 (1.00) 359 (.000) 99.43% 657 (.750) 11 (.250)
3 PGH 95.83% 4198 (.090) 516 (.910) 96.67% 592 (.690) 13 (.310)
4 RUD 98.62% 4160 (.090) 533 (.910) 96.21% 588 (.690) 13 (.310)
5 MGS 94.51% 4132 (.090) 509 (.910) 93.13% 581 (.710) 12 (.290)
6 HAT 94.84% 4128 (.090) 511 (.910) 95.54% 582 (.690) 13 (.310)
7 BIL 98.38% 4125 (.090) 532 (.910) 93.81% 587 (.710) 12 (.290)
8 RTP 95.34% 4125 (.090) 514 (.910) 92.31% 594 (.730) 11 (.270)
9 Con 98.88% 4122 (.090) 535 (.910) 95.54% 582 (.690) 13 (.310)
10 PIR 98.35% 4109 (.090) 532 (.910) 95.87% 585 (.690) 13 (.310)
11 PAY 97.83% 4102 (.090) 529 (.910) 94.74% 575 (.690) 13 (.310)
12 MAS 97.80% 4089 (.090) 529 (.910) 94.15% 590 (.710) 12 (.290)
13 LAZ 97.63% 4088 (.090) 528 (.910) 94.52% 573 (.690) 13 (.310)
14 PPP 92.72% 4082 (.090) 499 (.910) 95.99% 586 (.690) 13 (.310)
15 DII 98.79% 4079 (.090) 535 (.910) 98.50% 588 (.670) 14 (.330)
16 ACU 88.81% 4065 (1.00) 460 (.000) 95.65% 583 (.690) 13 (.310)
17 KEL 95.71% 4057 (.090) 517 (.910) 95.08% 578 (.690) 13 (.310)
18 DOL 88.60% 4055 (1.00) 399 (.000) 96.44% 590 (.690) 13 (.310)
19 LSD 88.55% 4053 (1.00) 459 (.000) 95.54% 582 (.690) 13 (.310)
20 DWI 97.38% 4050 (.090) 527 (.910) 93.25% 582 (.710) 12 (.290)
21 RWP 95.35% 4050 (.090) 515 (.910) 95.65% 583 (.690) 13 (.310)
22 COL 88.44% 4048 (1.00) 431 (.000) 96.21% 588 (.690) 13 (.310)
23 ARG 98.38% 4046 (.090) 533 (.910) 92.34% 574 (.700) 12 (.300)
24 HOW 96.18% 4041 (.090) 520 (.910) 94.97% 577 (.690) 13 (.310)
25 ENG 95.30% 4023 (.090) 515 (.910) 93.25% 582 (.710) 12 (.290)
26 PIG 99.17% 4019 (.080) 538 (.920) 87.88% 575 (.740) 10 (.260)
27 SMS 99.67% 4018 (.080) 541 (.920) 95.08% 578 (.690) 13 (.310)
28 KPK 97.30% 4011 (.090) 527 (.910) 95.31% 580 (.690) 13 (.310)
29 DES 97.62% 4006 (.090) 529 (.910) 87.88% 575 (.740) 10 (.260)
30 DCI 97.62% 4005 (.090) 529 (.910) 86.71% 574 (1.00) 9 (.000)
31 SAG 97.95% 4001 (.090) 531 (.910) 88.44% 580 (.740) 10 (.260)
32 MAR 95.41% 3997 (.090) 516 (.910) 94.18% 570 (.680) 13 (.320)
33 DEZ 96.25% 3996 (.090) 521 (.910) 90.17% 575 (.720) 11 (.280)
34 BWE 98.59% 3983 (.080) 535 (.920) 89.94% 573 (.720) 11 (.280)
35 CSL 87.00% 3982 (1.00) 424 (.000) 95.99% 586 (.690) 13 (.310)
36 BBT 95.54% 3976 (.090) 517 (.910) 92.00% 571 (.700) 12 (.300)
37 CTW 96.03% 3971 (.090) 520 (.910) 88.33% 579 (.740) 10 (.260)
38 CGV 96.85% 3958 (.090) 525 (.910) 93.50% 564 (.680) 13 (.320)
39 LOG 96.33% 3954 (.090) 522 (.910) 86.86% 575 (1.00) 9 (.000)
40 BRN 99.37% 3952 (.080) 540 (.920) 89.71% 571 (.720) 11 (.280)
41 BSS 86.34% 3952 (1.00) 402 (.000) 95.54% 582 (.690) 13 (.310)
42 WIL 86.32% 3951 (1.00) 363 (.000) 97.23% 597 (.690) 13 (.310)
43 FPI 99.53% 3947 (.080) 541 (.920) 89.71% 571 (.720) 11 (.280)
44 JTR 86.24% 3947 (1.00) 411 (.000) 94.86% 576 (.690) 13 (.310)
45 BIH 86.02% 3937 (1.00) 367 (.000) 97.00% 595 (.690) 13 (.310)
46 MOR 96.97% 3933 (.080) 526 (.920) 85.35% 565 (1.00) 8 (.000)
47 DOK 100.0% 3932 (.000) 544 (1.00) 90.39% 577 (.720) 11 (.280)
48 KAM 98.14% 3930 (.080) 533 (.920) 92.34% 574 (.700) 12 (.300)
49 FMG 85.16% 3898 (1.00) 373 (.000) 96.33% 589 (.690) 13 (.310)
50 JNK 85.14% 3897 (1.00) 364 (.000) 96.10% 587 (.690) 13 (.310)
51 WEL 84.68% 3876 (1.00) 361 (.000) 95.65% 583 (.690) 13 (.310)
52 HKB 84.66% 3875 (1.00) 374 (.000) 95.76% 584 (.690) 13 (.310)
53 PCP 84.51% 3868 (1.00) 375 (.000) 91.98% 591 (.730) 11 (.270)
54 BDF 97.16% 3867 (.080) 528 (.920) 84.89% 562 (1.00) 9 (.000)
55 NUT 93.28% 3866 (.090) 505 (.910) 92.46% 575 (.700) 12 (.300)
56 BAS 89.73% 3863 (.090) 484 (.910) 87.20% 569 (.740) 10 (.260)
57 RME 84.33% 3860 (1.00) 363 (.000) 93.36% 583 (.710) 12 (.290)
58 FAS 84.12% 3850 (1.00) 375 (.000) 94.97% 577 (.690) 13 (.310)
59 TPR 92.57% 3849 (.090) 501 (.910) 89.15% 566 (.720) 11 (.280)
60 RT 83.79% 3835 (1.00) 381 (.000) 92.91% 579 (.700) 12 (.300)
61 WLK 82.81% 3790 (1.00) 379 (.000) 95.54% 582 (.690) 13 (.310)
62 FEI 85.46% 3754 (.090) 460 (.910) 90.87% 561 (.700) 12 (.300)
63 SEL 81.47% 3729 (1.00) 337 (.000) 96.21% 588 (.690) 13 (.310)
64 EZ 81.21% 3717 (1.00) 327 (.000) 97.00% 595 (.690) 13 (.310)
65 ABC 81.12% 3713 (1.00) 331 (.000) 96.78% 593 (.690) 13 (.310)
66 S&P 80.99% 3707 (1.00) 434 (.000) 89.97% 553 (.690) 12 (.310)
67 ISR 80.84% 3700 (1.00) 328 (.000) 96.67% 592 (.690) 13 (.310)
68 ASH 80.53% 3686 (1.00) 342 (.000) 95.76% 584 (.690) 13 (.310)
69 MRK 80.45% 3682 (1.00) 329 (.000) 95.99% 586 (.690) 13 (.310)
70 MvG 80.40% 3680 (1.00) 327 (.000) 95.76% 584 (.690) 13 (.310)
71 COF 80.14% 3668 (1.00) 341 (.000) 95.31% 580 (.690) 13 (.310)
72 MCK 80.10% 3666 (1.00) 294 (.000) 94.71% 627 (1.00) 10 (.000)
73 RSL 80.05% 3664 (1.00) 374 (.000) 92.12% 572 (.700) 12 (.300)
74 HEN 79.97% 3660 (1.00) 336 (.000) 95.42% 581 (.690) 13 (.310)
75 MGN 79.13% 3622 (1.00) 333 (.000) 91.89% 570 (.700) 12 (.300)
76 KEN 79.05% 3618 (1.00) 329 (.000) 94.41% 572 (.680) 13 (.320)
77 PFZ 88.85% 3600 (.080) 482 (.920) 88.25% 558 (.710) 11 (.290)
78 SGR 78.50% 3593 (1.00) 335 (.000) 93.25% 582 (.710) 12 (.290)
79 HNL 78.41% 3589 (1.00) 339 (.000) 94.86% 576 (.690) 13 (.310)
80 SOR 82.57% 3583 (.090) 445 (.910) 97.12% 596 (.690) 13 (.310)
81 OSC 89.60% 3557 (.080) 487 (.920) 95.31% 580 (.690) 13 (.310)
82 SFX 77.58% 3551 (1.00) 374 (.000) 88.13% 557 (.710) 11 (.290)
83 KLK 77.10% 3529 (1.00) 342 (.000) 92.23% 573 (.700) 12 (.300)
84 VRN 75.66% 3463 (1.00) 291 (.000) 96.44% 590 (.690) 13 (.310)
85 KEE 75.11% 3438 (1.00) 303 (.000) 95.54% 582 (.690) 13 (.310)
86 LMC 75.09% 3437 (1.00) 341 (.000) 91.78% 569 (.700) 12 (.300)
87 MJS 74.94% 3430 (1.00) 285 (.000) 95.42% 581 (.690) 13 (.310)
88 GLD 74.90% 3428 (1.00) 290 (.000) 95.08% 578 (.690) 13 (.310)
89 YCM 74.87% 3427 (1.00) 327 (.000) 94.18% 570 (.680) 13 (.320)
90 MDS 74.46% 3408 (1.00) 289 (.000) 95.20% 579 (.690) 13 (.310)
91 TRP 72.56% 3321 (1.00) 303 (.000) 90.28% 576 (.720) 11 (.280)
92 BOW 70.59% 3231 (1.00) 295 (.000) 96.10% 587 (.690) 13 (.310)
93 WOL 69.87% 3198 (1.00) 258 (.000) 96.67% 592 (.690) 13 (.310)
94 RTH 69.83% 3196 (1.00) 257 (.000) 96.55% 591 (.690) 13 (.310)
95 REW 69.46% 3179 (1.00) 255 (.000) 91.30% 585 (.720) 11 (.280)
96 KNT 69.22% 3168 (1.00) 260 (.000) 96.33% 589 (.690) 13 (.310)
97 GBE 68.71% 3145 (1.00) 254 (.000) 95.65% 583 (.690) 13 (.310)
98 PIT 68.39% 3130 (1.00) 365 (.000) . . (. ) . (. )
99 BMC 75.01% 3117 (.090) 406 (.910) 93.13% 581 (.710) 12 (.290)
100 LAB 67.90% 3108 (1.00) 256 (.000) 92.23% 573 (.700) 12 (.300)
101 YAG 82.35% 3059 (.000) 448 (1.00) 88.47% 560 (.720) 11 (.280)
102 BCM 65.94% 3018 (1.00) 302 (.000) 92.68% 577 (.700) 12 (.300)
103 MTN 61.85% 2831 (1.00) 222 (.000) 95.08% 578 (.690) 13 (.310)
104 GRR 59.71% 2733 (1.00) 218 (.000) 100.0% 581 (.000) 15 (1.00)
105 AND 54.95% 2515 (1.00) 178 (.000) 97.00% 595 (.690) 13 (.310)
106 JWN 52.33% 2395 (1.00) 180 (.000) 95.90% 565 (.670) 14 (.330)
107 NGS 50.27% 2301 (1.00) 231 (.000) 91.10% 563 (.700) 12 (.300)
108 DUN 51.93% 2164 (.090) 281 (.910) . . (. ) . (. )
109 WWP 45.12% 2065 (1.00) 139 (.000) 95.31% 580 (.690) 13 (.310)
110 KH 44.19% 2010 (.100) 237 (.900) . . (. ) . (. )
111 ATC 39.17% 1793 (1.00) 166 (.000) 88.56% 581 (.740) 10 (.260)
112 KRA 36.12% 1653 (1.00) 97 (.000) 97.00% 595 (.690) 13 (.310)
113 WOB 35.83% 1640 (1.00) 95 (.000) 96.78% 593 (.690) 13 (.310)
114 HUF 34.91% 1598 (1.00) 98 (.000) 92.57% 576 (.700) 12 (.300)
115 TFG 34.08% 1560 (1.00) 103 (.000) 90.42% 557 (.700) 12 (.300)
116 RBA 33.58% 1537 (1.00) 97 (.000) 87.91% 555 (.710) 11 (.290)
117 CI 32.82% 1502 (1.00) 163 (.000) . . (. ) . (. )
118 SP 29.56% 1308 (.090) 159 (.910) . . (. ) . (. )
119 STH 12.54% 574 (1.00) 14 (.000) 96.92% 574 (.670) 14 (.330)
|
||||||||||
|
||||||||||
B. Jay Coleman, Ph.D. Richard deR. Kip Professor of Operations Management & Quantitative Methods Department of Management | Coggin College of Business | University of North Florida | Jacksonville, FL 32224 jcoleman@unf.edu Disclaimer |