Chapter 18
Forming and Shaping Plastics and Composite Materials
Alexandra Schönning, Ph.D.
Mechanical Engineering
University of North Florida

Figures by
Manufacturing Engineering and Technology
Kalpakjian and Schmid

Extrusion
Thermoplastic pellets, granules, or powder are placed into a hopper and fed into the extruder barrel.
A screw blends the pellets and conveys them down the barrel.
Internal friction and heaters, heat the pellets to a liquid form.

Extrusion (cont.)
Molten metal is then extruded through a die.
Product is cooled by air or by passing it through a water filled channel.

Figure 18.2

Characteristics of Forming and Shaping Processes for Plastics and Composite Materials

<table>
<thead>
<tr>
<th>Process</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrusion</td>
<td>Long, uniform, solid or hollow complex cross sections; high production rates; low tooling costs; wide tolerances.</td>
</tr>
<tr>
<td>Injection molding</td>
<td>Complex shapes of various sizes, eliminating assembly; high production rates; costly tooling; good dimensional accuracy.</td>
</tr>
<tr>
<td>Structural foam molding</td>
<td>Large parts with high stiffness-to-weight ratios; low tooling costs; high production rates; low cost for making components.</td>
</tr>
<tr>
<td>Blow molding</td>
<td>Hollow thin-walled parts of various sizes; high production rates; low tooling costs.</td>
</tr>
<tr>
<td>Rotational molding</td>
<td>Large hollow shapes of relatively simple shapes; low tooling costs; high production rates.</td>
</tr>
<tr>
<td>Transfer molding</td>
<td>Similar to rotational molding, relatively inexpensive tooling; medium tooling costs.</td>
</tr>
<tr>
<td>Casting</td>
<td>Surface of molded parts made with flexible molds; low production rates.</td>
</tr>
</tbody>
</table>

Introduction

- Plastics melt or cure at low temperatures
 - Easy to handle
 - Require less energy to process
- Shipped to manufacturing plants as pellets or powders
 - Melted at manufacturing plant (for thermoplastics) just before shaping process
 - Plastic is also available in sheets, plate, tubing
 - Liquid plastics are used in making reinforced plastic parts
- Thermosets
 - Two liquid components (typically)
 - Thermoplastics
 - Nylons, ABS, acrylics
 - Thermosets
 - Epoxy, phenolics, polyurethanes

Extrusion

- Thermoplastic pellets, granules, or powder are placed into a hopper and fed into the extruder barrel.
- A screw blends the pellets and conveys them down the barrel.
- Internal friction and heaters, heat the pellets to a liquid form.
- Screw has three sections
 - A fill: conveys the material from the hopper to the central section
 - A pump: the material is conveyed due to friction and heating
 - A feeding section: additional mixing occurs and pressure builds up.
Injection Molding
- Similar process as hot-chambered die casting
 - Injection molding typically uses plastic
 - Hot-chambered die casting typically shapes metals
- Barrel is heated to promote melting
 - Much of the energy required to heat the polymer comes from friction
- Newer equipment
 - Reciprocating screw
 - The screw stops momentarily and is then hydraulically pushed forward to force the molten plastic into the mold cavity
- Products made:
 - Cups, containers, tool handles, knobs...
- Temperature of the mold
 - Thermoplastics: Relatively cold molds
 - Thermosets: heated molds
- Once parts are cooled, the mold is opened and the part is ejected
 - Complex shapes and good dimensional accuracy can be achieved
 - Mandrels can be used
 - Mold components may include: cores, cycles, cooling channels, inserts, knockout pin systems
- Metallic components such as screws can be placed in the mold cavity

Examples of Injection Molding
- A mixture of resin and 2 or more reactive fluids is forced into the mold cavity at high speeds
- Chemical reaction takes place rapidly
- Thermoset part
- Applications: automotive bumpers, thermal insulation for fridge/freezer, water-skis, stiffness for structural components

Reaction-Injection Molding
- A modification of extrusion – and injection-molding processes
 - Reaction blow molding
 - A tube is extruded
 - Tube is then clamped in a cavity much larger than the tube diameter
 - Tube is then blown into the shape of the cavity
 - The mold closes around the tubing forming a part that contains parts are made
 - Used to make milk jugs
 - Injection blow molding
 - A short tube (called a parison) is first injection molded
 - The parison is then transferred to a blow-molding die
 - Heat is then blown into the parison
 - Mold closes around the cavity
 - Used to make beverage bottles and hollow containers
 - Multilayer blow molding
 - Coextruded tubes are used as a parison
 - Used for multi-layered packaging plastics

Injection-Molding Machine
- A 2.2-MN (250-ton) injection-molding machine. The tonnage is the force applied to keep the dies closed during injection of molten plastic into the mold cavity.

Blow Molding
- A modification of extrusion – and injection-molding processes
 - Extrusion blow molding
 - A tube is first extruded
 - Tube is then clamped in a cavity much larger than the tube diameter
 - Tube is then blown into the shape of the cavity
 - The mold closes around the tubing forming a part that contains parts are made
 - Used to make milk jugs
 - Injection blow molding
 - A short tube (called a parison) is first injection molded
 - The parison is then transferred to a blow-molding die
 - Heat is then blown into the parison
 - Mold closes around the cavity
 - Used to make beverage bottles and hollow containers
 - Multilayer blow molding
 - Coextruded tubes are used as a parison
 - Used for multi-layered packaging plastics (odor barrier...)

Figure 18.5 Injection molding with (a) plunger, (b) reciprocating rotating screw

Figure 18.6 Typical products made by injection molding, including examples of insert molding. Source: Plainfield Molding Inc.

Figure 18.7 A 2.2-MN (250-ton) injection-molding machine. The tonnage is the force applied to keep the dies closed during injection of molten plastic into the mold cavities. Source: Courtesy of Cincinnati Milacron, Plastics Machinery Divisions.

Figure 18.8 Schematic illustration of the reaction-injection molding process. Source: Modern Plastics Encyclopedia.

Figure 18.9 Schematic illustrations of (a) the blow-molding process for making plastic beverage bottles, and (b) a three-station reaction blow-molding machine. Source: Encyclopedia of Polymer Science and Engineering, 3rd ed. Copyright ©1985. Reprinted by permission of John Wiley & Sons, Inc.
Compression Molding
- Plastic material is placed directly into the heated mold cavity.
- Forming is done by applying pressure from a plug or from the upper half of the die.
- Cycles form the flash, removed by trimming parts made.
- Dies: Dishes, handles, container cups, fittings.
- Design considerations:
 - Undercuts are not recommended.
 - Dies can be designed to open the mold.
- Dies are typically less expensive than for injection molding, partially due to the simplicity of the dies.

Casting
- Both thermoplastics and thermosets.
- Parts made:
 - Tanks, chemical vessels, boat hulls, pump housing.
 - Components are made from a variety of materials (aluminum, bronze, etc.).
- Design considerations:
 - Solid-phase casting.
 - Centrifugal casting: same technique as described previously (now applied to plastics).
 - Potting and encapsulation: plastic serves as a dielectric.

Thermoforming
- Process used to form thermoplastic film over a mold by applying heat and pressure.
- Sheet is heated in an oven to a set point (soft, but not melted).
- Sheet is removed from oven and placed over the mold.
- Plastic sheet is forced against the mold through the application of vacuum.
- Material may be soft enough to where vacuum is enough.
- Sometimes it is necessary to apply additional air pressure or force by mechanical means.
- Used in forming:
 - Advertising signs, refrigerator liners, packaging, appliance housings, panels for shower stalls.
 - Molds:
 - Glass may be made of a material with strengths lower than typical molds: aluminum is OK.
 - Taps are made in the mold to allow for vacuum pull.

Transfer molding
- Development of compression molding.
- Thermosetting material is used.
- Material is placed in a heated transfer pot of chamber.
- Material is then heated.
- A cope is used to force the material to flow through the narrow channels into the mold cavity.
- The flow generates heat which raises the temperature of the material and homogenizes it.
- Parts made:
 - Electrical and electronic components.
 - Silicone parts.
 - Intricate parts of varying wall thickness.

Cold Forming and Solid-phase forming
- Cold metal working:
 - Processes can be applied to many thermoplastics:
 - Materials: Rolling, deep drawing, extrusion, closed-die forging.
 - Typical materials:
 - Polyethylene, polypropylene, ABS, PVC.
- Necessary attributes for cold forming:
 - Ductile at room temperature.
 - Deformations must be reversible (minimize springback and creep).
- Solid-phase forming:
 - At temperatures 10-20°C lower than the melting temperature.
 - Springback is lower than for cold forming.
Processing Reinforced Plastics

- Reinforced plastics is a type of composite.
- Used to increase strength-to-weight ratio, stiffness-to-weight ratio, and creep resistance.
- Composite consists of:
 - Fibers: used to strengthen the material.
 - Matrix: surrounds the fibers, is typically less expensive and has a lower weight.
- Processing cost is high.
- Fibers may be very short or long.
- Process of making prepregs:
 - Fibers are aligned and subjected to surface treatment to ensure better adhesion to the polymer matrix.
 - Fibers are then dipped in a resin bath to make them into a sheet or tape.

Molding Processes

- Molding of reinforced plastics:
 - Compression molding:
 - Material is placed between two molds
 - At room temperature or heated
 - Fiber length: 3-5 mm (typically)
 - Vacuum-bag molding:
 - Prepregs are laid in a mold to form the desired shape.
 - The lay-up is covered with a plastic bag and a vacuum is applied.
 - Contact molding:
 - Single male or female mold is used.
 - Hand lay-up or spray-up technique is used.
- Reinforced materials can include ceramics and metals also.

Figure 18.21 Manual methods of processing reinforced plastics: (a) hand lay-up and (b) spray-up. These methods are also called open-mold processing.

Tape Laying

- Fiber reinforced sheets are assembled into laminated structures.
- Horizontal stabilizer for the F-14 fighter aircraft.
- Computer controlled tape-laying machine.

Figure 18.18 (a) Single-ply lay-up of boron-epoxy prepreg for the horizontal stabilizer of the F-14 fighter aircraft. Source: Grumman Aircraft Corporation. (b) A 10 axis computer numerical controlled tape-laying system. The machine is capable of laying up to 10 tapes to ±5° in width at speeds of up to 60 m/min (17 ft/s). Source: Courtesy of Crompton Corporation.

Design Modifications to Minimize Distortion

- Examples of design modifications to eliminate or minimize distortion of plastic parts:
 - Suggested design changes to minimize distortion. Source: E. Strasser.
 - Die design for extrusion of square sections. Without this design, product cross-sections swell because of the recovery of the material; this effect is known as die swell. (c) Design change in a rib to minimize pull-in caused by shrinkage during cooling. (d) Stiffening the bottoms of thin plastic containers by doming - this technique is similar to the process used to make the bottoms of aluminum beverage cans.