
Chapter 15

Operating System

Security
Eighth Edition

By William Stallings

Operating

Systems:

Internals

and

Design

Principles

System Access Threats

System
access

threats fall
into two
general

categories:

Intruders
Malicious
software

Intruders

Masquerader

an individual who
is not authorized to
use the computer

and who penetrates
a systemõs access

controls to exploit a
legitimate userõs

account

Misfeasor

a legitimate user
who accesses data,

programs, or
resources for which
such access is not

authorized, or who
is authorized for
such access but

misuses his or her
privileges

Clandestine
user

an individual who
seizes supervisory

control of the
system and uses
this control to

evade auditing and
access controls or
to suppress audit

collection

Malicious Software

Â Programs that exploit vulnerabilities in computing systems

Â Also referred to as malware

Â Can be divided into two categories:

Â parasitic

Â fragments of programs that cannot exist independently of some
actual application program, utility, or system program

Â viruses, logic bombs, and backdoors are examples

Â independent

Â self-contained programs that can be scheduled and run by the
operating system

Â worms and bot programs are examples

Countermeasures

Â RFC 4949 (Internet Security Glossary) defines intrusion detection as a security
service that monitors and analyzes system events for the purpose of finding,
and providing real-time or near real-time warning of, attempts to access
system resources in an unauthorized manner

Â Intrusion detection systems (IDSs) can be classified as:

Â host-based IDS

Â monitors the characteristics of a single host and the events
occurring within that host for suspicious activity

Â network-based IDS

Â monitors network traffic for particular network segments or
devices and analyzes network, transport, and application
protocols to identify suspicious activity

IDS Components

Sensors

responsible for
collecting data

the input for a sensor
may be any part of a

system that could
contain evidence of

an intrusion

types of input to a
sensor include

network packets, log
files, and system call

traces

Analyzers

receive input from
one or more sensors

or from other
analyzer

responsible for
determining if an

intrusion has
occurred

may provide
guidance about what
actions to take as a

result of the
intrusion

User
interface

enables a user to
view output from the
system or control the

behavior of the
system

may equate to a
manager, director, or
console component

Authentication

Â In most computer security contexts, user authentication is the fundamental

building block and the primary line of defense

Â RFC 4949 defines user authentication as the process of verifying an identity

claimed by or for a system entity

Â An authentication process consists of two steps:

Â identification step

Â presenting an identifier to the security system

Â verification step

Â presenting or generating authentication information that

corroborates the binding between the entity and the identifier

Means of Authentication

Â Something the individual is

(static biometrics)

Â examples include recognition

by fingerprint, retina, and

face

Â Something the individual does

(dynamic biometrics)

Â examples include recognition

by voice pattern, handwriting

characteristics, and typing

rhythm

Â Something the individual knows

Â examples include a password,

a personal identification

number (PIN), or answers to

a prearranged set of questions

Â Something the individual
possesses

Â examples include electronic
keycards, smart cards, and
physical keys

Â referred to as a token

Access Control

Â Implements a security policy that specifies who or what may have access to

each specific system resource and the type of access that is permitted in each

instance

Â Mediates between a user and system resources, such as applications,

operating systems, firewalls, routers, files, and databases

Â A security administrator maintains an authorization database that specifies

what type of access to which resources is allowed for this user

Â the access control function consults this database to determine whether to

grant access

Â An auditing function monitors and keeps a record of user accesses to system

resources

Firewalls

Â Can be an effective means of
protecting a local system or
network of systems from
network-based security threats
while affording access to the
outside world via wide area
networks and the Internet

Â Traditionally, a firewall is a
dedicated computer that interfaces
with computers outside a network
and has special security
precautions built into it in order to
protect sensitive files on computers
within the network

Design goals:

1) The firewall acts as a choke

point, so that all incoming

traffic and all outgoing traffic

must pass through the firewall

2) The firewall enforces the local

security policy, which defines

the traffic that is authorized to

pass

3) The firewall is secure against

attacks

Buffer Overflow Attacks

Â Also known as a buffer overrun

Â Defined in the NIST (National Institute of Standards and

Technology) Glossary of Key Information Security Terms as:

òA condition at an interface under which more input can be placed

into a buffer or data-holding area than the capacity allocated, overwriting

other information. Attackers exploit such a condition to crash a system or

to insert specially crafted code that allows them to gain control of the systemó

Â One of the most prevalent and dangerous types of security attacks

int main(int argc, char *argv[]) {

 int valid = FALSE;

 char str1[8];

 char str2[8];

 next_tag(str1);

 gets(str2);

 if (strncmp(str1, str2, 8) == 0)

 valid = TRUE;

 printf("buffer1: str1(%s), str2(%s), valid(%d) \ n", str1, str2, valid);

}

(a) Basic buffer over flow C code

$ cc - g - o buffer1 buffer1.c

$./buffer1

START

buffer1: str1(START), str2(START), valid(1)

$./buffer1

EVILINPUTVALUE

buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)

$./buffer1

BADINPUTBADINPUT

buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

(b) Basic buffer over flow example runs

Figure 15.1 Basic Buffer Over flow Example

Memory

Address

Before

gets(str2)

 After

gets(str2)

Contains

Value of

. . . .

bffffbf4 34fcffbf

 4 . . .

 34fcffbf

 3 . . .

argv

bffffbf0 01000000

 01000000

argc

bffffbec c6bd0340

 . . . @

 c6bd0340

 . . . @

return addr

bffffbe8 08fcffbf

 08fcffbf

old base ptr

bffffbe4 00000000

 01000000

valid

bffffbe0 80640140

 . d . @

 00640140

 . d . @

bffffbdc 54001540

 T . . @

 4e505554

 N P U T

str1[4 - 7]

bffffbd8 53544152

 S T A R

 42414449

 B A D I

str1[0 - 3]

bffffbd4 00850408

 4e505554

 N P U T

str2[4 - 7]

bffffbd0 30561 540

 0 V . @

 42414449

 B A D I

str2[0 - 3]

Figure 15.2 Basic Buffer Over flow Stack Values

Exploiting Buffer Overflow

ÂTo exploit any

type of buffer

overflow the

attacker needs:

Â To identify a buffer overflow

vulnerability in some program

that can be triggered using

externally sourced data under

the attackers control

Â To understand how that buffer

will be stored in the processes

memory, and hence the potential

for corrupting adjacent memory

locations and potentially altering

the flow of execution of the

program

Compile-Time Defenses

ÂCountermeasures can be broadly classified into two

categories:

1) Compile-time defenses, which aim to harden

programs to resist attacks

2) Runtime defenses, which aim to detect and abort

attacks in executing programs

Defenses

Compile-time

Â Aim to prevent or detect buffer
overflows by instrumenting
programs when they are compiled

Â Possibilities:

Â choose a high-level language
that does not permit buffer
overflows

Â encourage safe coding
standards

Â use safe standard libraries

Â include additional code to
detect corruption of the stack
frame

Runtime

Â Can be deployed in operating
systems and updates and can
provide some protection for
existing vulnerable programs

Â These defenses involve changes to
the memory management of the
virtual address space of processes

Â these changes act either to:

Â alter the properties of
regions of memory

Â or to make predicting the
location of targeted buffers
sufficiently difficult to
thwart many types of
attacks

Compile-time Techniques

Â Language extensions and use of safe
libraries

Â there have been a number of proposals to
augment compilers to automatically insert range
checks on pointer references

Â Libsafe is an example that implements the
standard semantics but includes additional
checks to ensure that the copy operations do not
extend beyond the local variable space in the
stack frame

Â Stack protection mechanisms

Â an effective method for protecting programs
against classic stack overflow attacks is to
instrument the function entry and exit code to
set up and then check its stack frame for any
evidence of corruption

Â Stackguard, one of the best-known protection
mechanisms, is a GNU Compile Collection
(GCC) compiler extension that inserts additional
function entry and exit code

Â Choice of programming language

Â one possibility is to write the program using a
modern high-level programming language that
has a strong notion of variable type and what
constitutes permissible operations on them

Â the flexibility and safety provided by these
languages does come at a cost in resource use,
both at compile time and also in additional code
that must execute at runtime

Â Safe coding techniques

Â programmers need to inspect the code and
rewrite any unsafe coding constructs

Â an example is the OpenBSD project which
produces a free, multiplatform 4.4BSD-based
UNIX -like operating system

Â among other technology changes, programmers
have under-taken an extensive audit of the
existing code base, including the operating
system, standard libraries, and common utilities

Runtime Techniques

Â Guard pages

Â caps are placed between the ranges of addresses
used for each of the components of the address
space

Â these gaps, or guard pages, are flagged in the
MMU as illegal addresses and any attempt to
access them results in the process being aborted

Â a further extension places guard pages between
stack frames or between different allocations on
the heap

Â Executable address space protection

Â a possible defense is to block the execution of
code on the stack, on the assumption that
executable code should only be found elsewhere
in the processes address space

Â extensions have been made available to Linux,
BSD, and other UNIX-style systems to support
the addition of the no-execute bit

Â Address space randomization

Â a runtime technique that can be used to thwart
attacks involves manipulation of the location of
key data structures in the address space of a
process

Â moving the stack memory region around by a
megabyte or so has minimal impact on most
programs but makes predicting the targeted
bufferõs address almost impossible

Â another technique is to use a security extension
that randomizes the order of loading standard
libraries by a program and their virtual memory
address locations

File System Access
Control

Â Identifies a user to the system

Â Associated with each user there can be a profile that specifies permissible

operations and file accesses

Â The operating system can then enforce rules based on the user profile

Â The database management system, however, must control access to specific

records or even portions of records

Â The database management system decision for access depends not only on

the userõs identity but also on the specific parts of the data being accessed

and even on the information already divulged to the user

Discretionary

access control

policy

Mandatory

access control

policy

Role-based

access control

policy

Figure 15.4 Access Control Policies

control wakeup seek

owner

ownerwakeup
read

owner
owner
control

execute

write stop

owner

control

control

read *

write *

* - copy flag set

seek *

S1

S2

S
U

B
J
E

C
T

S

OBJECTS

subjects files processes disk drives

S3

S2S1

Figure 15.5 Extended Access Control Matrix

S3 F1 F2 P1 P2 D1 D2

