MAC 2313 HANDOUT 1

Note: These exercises are usually more involved than those from regular homework. They are intended for those who are interested in getting a more in-depth practice with vectors.

1.) Let AA_1, BB_1, and CC_1 be the medians of a triangle ABC. Prove that
$$\overrightarrow{AB} \cdot \overrightarrow{CC_1} + \overrightarrow{BC} \cdot \overrightarrow{AA_1} + \overrightarrow{CA} \cdot \overrightarrow{BB_1} = 0.$$

2.) Let AA_1, BB_1, and CC_1 be the altitudes of a triangle ABC. Denote by a, b, c the lengths of sides BC, CA and AB respectively. Also, denote by \vec{h}_a, \vec{h}_b, \vec{h}_c the altitude vectors $\overrightarrow{AA_1}$, $\overrightarrow{BB_1}$, and $\overrightarrow{CC_1}$ respectively. Prove that
$$a^2\vec{h}_a + b^2\vec{h}_b + c^2\vec{h}_c = \vec{0}.$$ (Hint: Write \vec{h}_a in terms of \overrightarrow{AB} and the projection of \overrightarrow{AB} onto \overrightarrow{BC}. Here you can use projection formula from the text. Do the same for other altitude vectors.)

3.) Suppose that $ABCD$ is a rectangle in \mathbb{R}^3. Let M be an arbitrary point in \mathbb{R}^3. Prove that
$$\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}.$$ Using this equality, prove that
$$\|\overrightarrow{MA}\|^2 + \|\overrightarrow{MC}\|^2 = \|\overrightarrow{MD}\|^2 + \|\overrightarrow{MB}\|^2.$$

4.) Suppose that \vec{a}, \vec{b}, \vec{c} are coplanar (i.e. lie in the same plane in \mathbb{R}^3). Prove that $\vec{a} + \vec{b} + \vec{c}$, and $\vec{c} + \vec{a}$ are also coplanar.

5.) Suppose that A, B, and C are three points in \mathbb{R}^3 with position vectors \vec{r}_1, \vec{r}_2, and \vec{r}_3 respectively. Prove that the area of the triangle ABC is given by
$$\frac{1}{2}\|\vec{r}_1 \times \vec{r}_2 + \vec{r}_2 \times \vec{r}_3 + \vec{r}_3 \times \vec{r}_1\|.$$

6.) Suppose that we are given two perpendicular vectors \vec{a} and \vec{b} in \mathbb{R}^3. We are also given a scalar k. Find a vector \vec{r} satisfying the following system of equations:
$$\vec{a} \times \vec{r} = \vec{b}; \quad \vec{a} \cdot \vec{r} = k\|\vec{a}\|^2.$$ (Hint: Apply $\vec{a} \times$ from the left to both sides of the first equation, and use formulas from exercise 64 (page 751).)
7.) Prove that

\[(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) + (\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{d}) = 0.\]

(Hint: You may want to use the formula from exercise 60 on page 751 together with exercise 64 on page 751.)