The Safe S has a weight of 200 lb and is supported by the rope and pulley arrangement shown. If the end of the rope is given to a boy B of weight 90 lb, determine his acceleration if in the confusion he doesn’t let go of the rope.

Equations of Motion

From FBD$_2$ and MAD$_1$:

\[+ \sum F_y = ma_y \]

\[T - 90 = -\left(\frac{90}{32.2}\right)a_B \] \hspace{1cm} EQ. (1)

From FBD$_2$ and MAD$_2$:

\[+ \sum F_y = ma_y \]

\[2T - 200 = -\left(\frac{200}{32.2}\right)a_S \] \hspace{1cm} EQ. (2)

Kinematic

\[2s_s + s_B = l \]

Take time derivative twice:

\[\frac{d^2 s}{dt^2} = a \]

\[(t^2) \]

\[2a_s + a_B = 0 \] \hspace{1cm} EQ. (3)

3 equations, 3 unknowns \hspace{1cm} Solve

\[a_B = -2.30 \text{ ft/s}^2 \]

\[a_S = 1.15 \text{ ft/s}^2 \]

\[T = 96.43 \text{ lb} \]