16.4. Just after the fan is turned on, the motor gives the blade an angular acceleration \(\alpha = 0.06t \) rad/s\(^2\), where \(t \) is in seconds. Determine the speed of the tip \(P \) of one of the blades when \(t = 3 \) s. How many revolutions has the blade turned in 3 s? When \(t = 0 \) the blade is at rest.

\[
\alpha = \frac{d\omega}{dt} = 0.06t \text{ rad/s}^2
\]

\[
\omega = \int 0.06t \, dt = 33.3(1 - e^{-0.06t}) \text{ rad/s}
\]

\[
\omega = 17.71 \text{ rad/s}
\]

\[
\phi = \int 0.3(1 - e^{-0.06t}) \, dt = 1.96 \text{ rad}
\]

\[
\phi = 33.3 \text{ rad} = 5.94 \text{ rev}
\]

16.5. Due to an increase in power, the motor \(\mathcal{M} \) rotates the shaft \(A \) with an angular acceleration of \(\alpha = \frac{0.005t}{t + 1} \) rad/s\(^2\), where \(t \) is in radians. If the shaft is initially turning at \(\omega = 50 \) rad/s, determine the angular velocity of point \(B \) after the shaft undergoes an angular displacement \(\Delta \phi = 10 \) rev.

\[
\omega = \alpha \Delta \phi = \frac{0.005t}{t + 1} \Delta \phi
\]

\[
\int \frac{0.005t}{t + 1} \, dt = 0.35 \Delta \phi
\]

\[
0.5^2 \approx 0.75 \text{ rad/s}
\]

\[
\omega = 111.45 \text{ rad/s}
\]

\[
\Delta \phi = 10 \text{ rev}
\]

\[
\omega = 22.3 \text{ m/s}
\]
16-17. For the outboard motor in Prob. 16-16, determine the magnitudes of the velocity and acceleration at a point P located on the tip of the propeller at the instant \(t = 0.75 \) s.

\[
\begin{align*}
\omega_P &= 285.8 \text{ rad/s}^2 \\
\omega_P^2 &= 19281 \text{ rad}^2/s^2 \\
\omega &= \sqrt{285.8^2 + 19281} \\
&= 2925.6 \times 10^3 \text{ rad}^2/s^2 \\
\omega &= 150 \sqrt{2} \text{ rad/s} \\
\alpha_P &= 2 \omega_P \omega \\
&= 2 \times 19281 \times 150 \sqrt{2} \\
\alpha &= 143 \text{ in/s}^2 \\
\alpha &= 150 \sqrt{2} \text{ in/s}^2
\end{align*}
\]

16-18. Starting from rest when \(t = 0 \), pulley A is given an angular acceleration \(\omega = (60) \text{ rad/s}^2 \), where \(\theta \) is in radians. Determine the speed of block B when it has risen \(x = 6 \) m. The pulley has an inner hub D which is fixed to C and turns with it.

\[
\begin{align*}
\theta &= 60 \text{ rad} \\
\theta &= 60 \times 0.15 \text{ rad} \\
\theta &= 240 \text{ rad} \\
\theta &= 60 \times 0.15 \\
\theta &= 240 \text{ rad} \\
\theta &= 60 \times 0.15 \\
\theta &= 240 \text{ rad} \\
\alpha &= 60 \text{ rad/s}^2 \\
\alpha &= 60 \times 0.15 \text{ rad/s}^2 \\
\alpha &= 90 \text{ rad/s}^2 \\
\alpha &= 60 \text{ rad/s}^2 \\
\alpha &= 90 \text{ rad/s}^2 \\
\alpha &= 20 \text{ rad/s}^2
\end{align*}
\]
16-24. The disk starts from rest and is given an angular acceleration \(\alpha = (100 \text{ rad/s}^2) \) rad/s\(^2\), where \(\theta \) is in radians. Determine the angular velocity of the disk and its angular displacement when \(t = 4 \) s.

\[
\begin{align*}
\alpha &= 100 \text{ rad/s}^2 \\
\omega &= 0 \\
\int_{0}^{\omega} \alpha \, d\theta &= \int_{0}^{\theta} 100 \, d\theta \\
\frac{1}{2} \theta &= 100 \theta^2 \\
\theta &= \frac{\sqrt{4}}{2} = 2 \sqrt{2} \\
\theta &= 2.83 \text{ rad} \\
\omega &= 2 \sqrt{2} \text{ rad/s} \\
\omega &= 4 \text{ rad/s} \\
\theta &= 2.83 \text{ rad} \\
\end{align*}
\]

Ans

16-25. The disk starts from rest and is given an angular acceleration \(\alpha = (100 \text{ rad/s}^2) \) rad/s\(^2\), where \(\theta \) is in radians. Determine the magnitudes of the normal and tangential components of acceleration of a point \(P \) on the rim of the disk when \(t = 4 \) s.

\[
\begin{align*}
\alpha &= 100 \text{ rad/s}^2 \\
\omega &= 0 \\
\int_{0}^{\omega} \alpha \, d\theta &= \int_{0}^{\theta} 100 \, d\theta \\
\frac{1}{2} \theta &= 100 \theta^2 \\
\theta &= \frac{\sqrt{4}}{2} = 2 \sqrt{2} \\
\theta &= 2.83 \text{ rad} \\
\omega &= 2 \sqrt{2} \text{ rad/s} \\
\omega &= 4 \text{ rad/s} \\
\end{align*}
\]

Ans
16-20. Rotation of the robotic arm occurs due to linear movement of the hydraulic cylinders A and B. If cylinder A is extending at the constant rate 0.5 ft/s while B is held fixed, determine the magnitude of velocity and acceleration of the part C held in the grip of the arm. The gear at D has a radius of 0.10 ft.

Angular Motion: The angular velocity of gear D must be determined first. Applying Eq. 16-8, we have

\[\omega_D = \omega_A \cdot \frac{r_A}{r_D} = 0.5 \times \frac{0.10}{6} = 0.00833 \text{ rad/s} \]

Motion of Part C: Since the shaft that turns the robot arm is attached to gear D, then the angular velocity of the robot's arm \(\theta_D = \omega_D = 0.00833 \text{ rad/s} \). The distance of part C from the rotating shaft is \(r_C = 4.5^\circ \times 2\pi \times \frac{4.5}{360} = 0.0477 \text{ ft} \). The magnitude of the velocity of part C can be determined using Eq. 16-8

\[v_C = r_C \cdot \omega_D = 0.0477 \times 0.00833 = 0.00397 \text{ ft/s} \]

The tangential and normal components of the acceleration of part C can be determined using Eqs 16-11 and 16-12 respectively.

\[a_T = \omega_D \cdot r_C = 0.00833 \times 0.0477 = 0.00040 \text{ ft/s}^2 \]

\[a_N = \frac{v_C}{r_C} = \frac{0.00397}{0.0477} = 0.0834 \text{ ft/s}^2 \]

At the instant shown, gear A is rotating with a constant angular velocity \(\omega_A = 6 \text{ rad/s} \). Determine the largest angular velocity of gear B and the maximum speed of point C.

\[\theta_B = 10^\circ \times \frac{2\pi}{360} = 0.00556 \text{ rad} \]

\[\omega_B = \frac{\omega_A}{\theta_B} = \frac{6}{0.00556} = 1084.3 \text{ rad/s} \]

\[v = v_B \omega_B = 6 \times 1084.3 = 650.6 \text{ ft/s} \]

\[v = 650.6 \text{ ft/s} \]
16-33. The bar BC rotates uniformly about the shaft as D with a constant angular velocity ω. Determine the velocity and acceleration of the bar AD, which is confined by the guides to move vertically.

\[y = 3b \cos \theta \]
\[y' = 3b \omega \sin \theta \]
\[y'' = 3b \omega^2 \cos \theta \]
\[\sin \theta = \frac{v_c}{3b \omega} \text{ and } \theta = 0 \Rightarrow \theta = 90^\circ \text{ Ans} \]
\[v_c = 3b \omega \cos 90^\circ = 0 \text{ m/s} \]
\[a_c = 3b \omega^2 \cos 90^\circ = 0 \text{ m/s}^2 \text{ Ans} \]

16-34. The scaffold XY is raised hydraulically by moving the roller at A toward the pin at B. If A is approaching B with a speed of 1.5 ft/s, determine the speed at which the platform is rising at a fraction of D. The 4 ft links are pin-connected at their midpoints.

Potential energy relation:

\[z = 8 \cos \theta \]
\[y = 4 \cos \theta \]

Force equilibrium:

\[z = 8 \cos \theta \]
\[y = 4 \cos \theta \]
\[z = 8 \cos \theta \]
\[2\theta = 1.5 \text{ ft/s} \]
\[\theta = 0.524 \text{ radians} \]
\[z = 8 \cos 0.524 = 6.375 \text{ ft} \]
\[y = 4 \cos 0.524 = 3.805 \text{ ft} \]
\[(L/2)^2 = \frac{1}{2} z \theta^2 \]
\[\theta = 0.524 \text{ radians} \text{ Ans} \]

16-35. The mechanism is used to convert the constant circular motion ω of rod AB into oscillating motion of rod CD. Determine the velocity and acceleration of CD for any angle θ of AB.

\[z = 8 \cos \theta \]
\[z' = -8 \omega \sin \theta \]
\[z'' = -8 \omega^2 \cos \theta \]

Using $z = 8 \cos \theta$, $\theta = \omega t$, and $t = 0$, $\theta = 0$.
\[z'' = -8 \omega^2 \cos \theta = -8 \omega^2 \cos 0 \text{ Ans} \]
\[z'' = -8 \omega^2 \cos \theta = -8 \omega^2 \cos \theta \text{ Ans} \]

Negative signs indicate the direction, z'', and ω are defined opposite in sign.
16-39. At the instant $\theta = 50^\circ$, the slotted guide is moving upward with an acceleration of 3 m/s² and a velocity of 2 m/s. Determine the angular acceleration and angular velocity of link AB at this instant. Note: The upward motion of the guide is in the negative y direction.

$$y = 0.35 m$$

$$v_y = -0.23 m/s$$

$$a_v = a \left(\cos 2\theta = \cos 100^\circ \right)$$

Here, $v_y = 3 m/s$, $a_v = 3 m/s^2$, and $a = \alpha = \omega = \omega = 50^\circ$.

$$\omega = \sqrt{\frac{v^2}{r}} = \sqrt{\frac{(3 m/s)^2}{2 m}} \quad \text{Ans}$$

$$\alpha = \frac{a}{r \cos 2\theta} = \frac{3 m/s^2}{2 m \cos 100^\circ} \quad \text{Ans}$$

16-40. Disk A rolls without slipping over the surface of the fixed cylinder B. Determine the angular velocity of A if its center C has a speed $v_C = 5 m/s$. How many revolutions will A have made about its center just after link DC completes one revolution?

As shown by the construction, as A rolls through the arc $x = r_1$.

the center of the disk moves through the same distance $y = r_2$.

Here:

$$x = r_1$$

$$y = r_2$$

$$5 = 5 \times (0.15)$$

$$5 = 3.33 m/s$$ \text{Ans}

Last:

$$\omega = \frac{v}{r} = \frac{5 m/s}{2 m} = \omega_2$$

$$\Delta \theta = 2 \pi$$

This, A makes 2 revolutions for each revolution of CD. \text{Ans}

16-41. Arm AB has an angular velocity of ω and an angular acceleration of α. If no slipping occurs between the disk and the fixed curved surface, determine the angular velocity and angular acceleration of the disk.

$$\omega = \frac{d \theta}{dt} = \frac{\omega_0}{2}$$

$$\alpha = \frac{d \omega}{dt} = \frac{\alpha}{2}$$ \text{Ans}

$$\frac{d \omega}{dt} = \frac{\omega_0}{2}$$ \text{Ans}
16-44. The pins at \(A \) and \(D \) are confined to move in the vertical and horizontal tracks. If the slotted arm is causing \(A \) to move downward at \(v_A \), determine the velocity of \(B \) at the instant shown.

Forces: continuous equation:

\[m \ddot{B} = \frac{d}{2} \]

Time derivatives:

\[\dot{r}_1 = \left(\frac{1}{2} \right) \dot{v}_1 \]

\[\dot{r}_2 = \left(\frac{1}{2} \right) \dot{v}_2 \]

\[v_A = \left(\frac{1}{2} \right) v_A \]

16-45. Bar \(AB \) rotates uniformly about the fixed pin \(A \) with a constant angular velocity \(\omega \). Determine the velocity and acceleration of block \(C \) at the instant \(\phi = 60^\circ \).

\[L \cos \phi + L \cos \phi - L \]

\[\sin \phi + \sin \phi = 0 \]

\[\dot{x} + \dot{x} = 0 \]

\[\sin (2\phi) + \sin (2\phi) = \cos (\phi) + \cos (\phi) = 0 \]

When \(\phi = 60^\circ \), \(\dot{x} = 0 \).

\[\dot{x} = -1.13L \]

\[\dot{x} = 0 \]

Ans: \(v = L \cos(60^\circ) \)

Ans: \(\ddot{x} = \frac{a}{2} \)

\[\dot{x} = \frac{a}{2} \]

\[\ddot{x} = 0 \]

\[v_x = L \cos(60^\circ) - a = \cos(60^\circ) \]

Ans: \(\frac{a}{2} \)

\[a_x = -1 \cdot \sin(60^\circ) \]

\[a_y = \cos(60^\circ) \cos(60^\circ) \]

Ans: \(a = 0.57L \)
16-54. The shaper mechanism is designed to give a slow cutting stroke and a quick return to a blade attached to the slider at C. Determine the velocity of the slider block C at the instant \(\theta = 60^\circ \), if link AB is rotating at 6 rad/s.

16-55. Determine the velocity of the slider block at C at the instant \(\theta = 45^\circ \), if link AB is rotating at 4 rad/s.

\[v_C = v_B = 6 \text{ m/s} \]

\[v_C = -0.60 \text{ m/s} \]

\[v_B = -0.60 \text{ m/s} \]

16-56. The velocity of the slider block C is 4 ft/s up the inclined groove. Determine the angular velocity of links AB and BC and the velocity of point B at the instant shown.

For link BC

\[v_B = 4 \text{ ft/s} \]

\[v_B = v_C - v_{BC} \]

\[v_{BC} = 4 \text{ ft/s} \]

\[\theta = (45 + 45) \]

\[v_B = v_C - v_{BC} \]

\[-4\cos(45^\circ) \text{ m/s} \]

\[v_B = 2.83 \text{ m/s} \]

\[\theta = 90^\circ \text{ rad/s} \]

\[v_B = 2.83 \text{ m/s} \]

For link AB: Link AB rotates about the fixed point, hence

\[v_B = \omega \times r_B \]

\[v_B = 2.83 \text{ m/s} \]

\[\omega = 2.83 \text{ rad/s} \]
The rotation of link AB creates an oscillating movement of gear F. If AB has an angular velocity of \(\omega_{AB} = 6 \text{ rad/s} \), determine the angular velocity of gear F at the instant shown. Gear E is rigidly attached to arm CD and pivoted at D to a fixed point.

Kinematic Diagram: Since link AB and arm CD are rotating about the fixed points A and D respectively, then \(v_A \) and \(v_D \) are always directed perpendicular to the respective arms with the magnitudes of \(v_A = \omega_{AB} \times r_A = 6 \times 0.075 \) in/s and \(v_D = \omega_{CD} \times r_D = 1.5 \times 0.09 \) in/s. At the instant shown, \(v_A \) and \(v_D \) are directed toward negative x-axis.

Velocity Equations: Here, \(v_F = (0 \text{ in/s}) \pm (0.1 \text{ in/s}) \) m. Applying Eq. 18 to 19, we have:

\[
\begin{align*}
\vec{v}_F &= \vec{v}_A + \vec{v}_D + \vec{a}_F \\
-0.435 &= -0.156x_F + 0.156x_F + 0.000001 + 0.0013 \\
-0.435 &= 0.0013 \\
0.0013 &= 0.0013 \\
\end{align*}
\]

Equating i and j components gives:

\[
\begin{align*}
0 &= 0.000001 \quad \omega_{CF} = 0 \\
-0.435 &= 0.0013 \quad \omega_{DF} = 3.00 \text{ rad/s}
\end{align*}
\]

Angular Motion About a Fixed Point: The angular velocity of gear E is determined with arm CD since they are attached together. Then, \(\omega_D = \omega_{CD} + 3.00 \text{ rad/s} \). Here, \(\omega_{DF} = \omega_{DF} \) where \(\omega_{DF} \) is the angular velocity of gear F.

\[
\omega_F = \frac{2\omega_D}{25} \times 0.030 = 12.5 \text{ rad/s}
\]

Ann
16-61. At the instant shown, the truck is traveling to the right at \(v_r = 3 \text{ m/s} \), while the pipe is rolling counterclockwise at \(\omega_p = 8 \text{ rad/s} \) without slipping at \(B \). Determine the velocity of the pipe's center \(G \).

\[
v_r = v_x + v_{rG}
\]

\[
v_{rG} = \frac{\gamma}{2} + \omega_p
\]

\[
v_r = 3 \text{ m/s} == \text{ Ans}
\]

Also:

\[
v_x = v_x + \gamma \times v_{rG}
\]

\[
v_{rG} = \frac{\gamma}{2} + (8 \text{ rad/s}) \times (1.5 \text{ m})
\]

\[
v_G = 3 - 12
\]

\[
v_G = -9 \text{ m/s} == \text{ Ans}
\]

16-62. At the instant shown, the truck is traveling to the right at \(v_r = 8 \text{ m/s} \). If the spool does not slip at \(B \), determine its angular velocity so that its mass center \(G \) appears to an observer on the ground to remain stationary.

\[
v_G = v_x + v_{rG}
\]

\[
0 = \gamma + 1.5 \omega_p
\]

\[
\omega_p = \frac{1}{1.5} = 5.33 \text{ rad/s} \quad \text{Ans}
\]

Also:

\[
v_x = v_x = \omega_p \times v_{rG}
\]

\[
0 = \frac{8 \text{ m/s}}{1.5} \times (8 \text{ rad/s}) \times (1.5 \text{ m})
\]

\[
\omega_p = \frac{8}{1.5} = 5.33 \text{ rad/s} \quad \text{Ans}
\]
Mechanical toy animals often use a walking mechanism as shown idealized in the figure. If the driving crank AB is propelled by a spring motor such that $\omega_{AB} = 5 \text{ rad/s}$, determine the velocity of the rear foot E at the instant shown. Although not part of this problem, the upper end of the foreleg has a slotted guide which is constrained by the fixed pin at G.

\[v_E = v_{x} + v_{oy} \]
\[v_{x} = 2.5 + 3w \]
\[v_{oy} = 2.21 \text{ in/s} \]
\[\omega_{AB} = 5 \text{ rad/s} \]
\[v_{E} = (2.21)(1.5) = 3.32 \text{ in/s} \]

Also:
\[v_{x} = v_{dx} + v_{xy} \]
\[v_{dx} = 4.5 \text{ in/s} \]
\[v_{xy} = 0 \text{ in/s} \]
\[v_{E} = v_{x} + \theta \times v_{oy} \]
\[(\theta_{AB}) = \omega_{AB} \times \theta_{AB} \]
\[(\theta_{AB}) = 5 \text{ rad/s} \times \theta_{AB} \]
\[\omega_{AB} = 5 \text{ rad/s} \]
\[v_{E} = 22.31 \text{ in/s} \]

Assume...
16-88. The wheel rolls on its hub without slipping on the horizontal surface. If the velocity of the center of the wheel is \(v_C = 2 \text{ ft/s} \) to the right, determine the velocities of points \(A \) and \(B \) at the instant shown.

\[
\begin{align*}
\omega &= \sqrt{\frac{v_C}{R}} \\
\alpha &= \frac{v_C}{R} = \left(\frac{2}{12} \right) = 0.17 \text{ rad/s} \\
\gamma &= \alpha R = \left(\frac{11}{12} \right) = 0.73 \text{ ft/s} \\
v_A &= \sqrt{\frac{v_C}{R}} = \sqrt{2} = 2.83 \text{ ft/s} \\
\theta &= \tan^{-1} \left(\frac{\frac{1}{2}}{12} \right) = 43^\circ
\end{align*}
\]

16-89. If link \(CD \) has an angular velocity of \(\omega_{CD} = 6 \text{ rad/s} \) and the angular velocity of link \(AB \) at instant shown.

\[
\begin{align*}
v_C &= \omega_{CD} r_{CD} = (6)(0.5) = 3.0 \text{ m/s} \\
\gamma &= \alpha d_{CD} = 0.6 \text{ rad/s} \\
v_C &= \frac{1}{\cos 30^\circ} = 1.04 \left(\frac{6}{\cos 30^\circ} \right) = 7.20 \text{ m/s} \\
v_D &= \frac{1}{\cos 60^\circ} = 2 \left(\frac{3}{\cos 60^\circ} \right) = 6 \text{ rad/s} \\
v_C &= \frac{1}{\cos 30^\circ} = 1.04 \left(\frac{6}{\cos 30^\circ} \right) = 7.20 \text{ m/s} \\
v_D &= \frac{0.1}{6 \text{ rad/s}} = 40 \text{ ft/s}
\end{align*}
\]
16-97. Due to slipping points A and B on the rim of the disk have the velocities shown. Determine the velocities of the center point C and point E at this instant.

![Diagram showing a disk with points A, B, C, and E with velocities at A and B.]

\[v_A = 10 \text{ cm/s} \]
\[v_B = 5 \text{ cm/s} \]
\[x = 1.06647 \text{ m} \]
\[\theta = \frac{12}{10} \text{ rad} \]
\[v_C = \theta \cdot v_B \]
\[v_C = 0.3751 \text{ rad/s} \cdot 5 \text{ cm/s} \]
\[v_C = 1.8755 \text{ cm/s} \]
\[v_E = \theta \cdot v_A \]
\[v_E = 0.3751 \text{ rad/s} \cdot 10 \text{ cm/s} \]
\[v_E = 3.751 \text{ cm/s} \]

16-98. The mechanism used in a marine engine consists of a single crank AB and two connecting rods BC and BD. Determine the velocity of the piston at C the instant the crank is at the position shown and has an angular velocity of 5 rad/s.

![Diagram showing a mechanism with crank AB, connecting rods BC and BD, and a piston at C.]

\[v_p = 3.25 \text{ ft/s} \]

![Diagram showing an analysis for point C.]

\[v_{OC} = 0.4 \text{ m/s} \]
\[r_{OC} = 0.4 \text{ m} \]
\[v_{BC} = 0.4 \text{ m/s} \]
\[r_{BC} = 0.4 \text{ m} \]
\[v_{DC} = 0.3444 \text{ m/s} \]
\[\omega = \frac{1}{10} \text{ rad/s} \]
\[v_C = 0.4099 \text{ m/s} = 0.69 \text{ ft/s} \]
16-102. The epicyclic gear train is driven by the rotating link DE, which has an angular velocity \(\omega_D = 5 \text{ rad/s} \). If the ring gear \(F \) is fixed, determine the angular velocities of gears \(A, B, \) and \(C \).

\[\begin{align*}
\omega_A &= 0.14(3) = 0.42 \text{ rad/s} \\
\omega_B &= 0.68 \text{ rad/s} \\
\omega_C &= 0.48 \text{ rad/s} \\
\omega_D &= 0.68 \text{ rad/s} \\
\omega_E &= 20.73 \text{ rad/s} \\
\omega_F &= 14.8 \text{ rad/s}
\end{align*} \]

16-103. The mechanism produces intermittent motion of link \(AB \). If the sprocket \(S \) is turning with an angular velocity of \(\omega_S = 6 \text{ rad/s} \), determine the angular velocity of link \(AB \) at this instant. The sprocket \(S \) is mounted on a shaft which is separate from the collinear shaft attached to \(AB \) at \(A \). The pin at \(C \) is attached to one of the chain links.

Kinematic Diagram: Since link \(AB \) is moving about the fixed point \(A \), then \(\omega_A \) is always directed perpendicular to link \(AB \) and its magnitude is \(\omega_A = \omega_S \). At the center shown, \(\omega_A \) is directed at an angle of \(90^\circ \) with the horizontal. Since point \(C \) is attached to the chain, as shown in the above figure, it moves vertically with a speed of \(v_C = \omega_A \gamma = 6(0.175) = 1.05 \text{ m/s} \).

Kinematics Equation: The instantaneous center of zero velocity of link \(BC \) is on the center line drawn perpendicular to \(\omega_A \) and \(v_C \). Using law of sines, we have

\[\begin{align*}
\text{Law of sines:} & \\
\frac{\omega_B}{\sin 105^\circ} &= \frac{\omega_C}{\sin 30^\circ} \\
\omega_B &= 0.286 \text{ rad/s}
\end{align*} \]

The angular velocity of link \(BC \) is given by

\[\omega_C = \frac{\omega_A}{\sin 30^\circ} = 0.8 \text{ rad/s} \]

Thus, the angular velocity of link \(AB \) is given by

\[\begin{align*}
\omega_A &= \omega_S - \omega_B - \omega_C \\
&= 6 - 0.8 - 0.286 \\
&= 4.914 \text{ rad/s}
\end{align*} \]

\[\omega_A = 7.17 \text{ rad/s} \]
16-109. The wheel is moving to the right such that it has an angular velocity \(\omega = 2 \, \text{rad/s} \) and angular acceleration \(\alpha = 4 \, \text{rad/s}^2 \) at the instant shown. If the disk does not slip at \(A \), determine the acceleration of point \(B \).

Since no slipping:

\[
\begin{align*}
\alpha & = \omega' = 4 \, \text{rad/s}^2 \\
\omega & = \omega_0 + \alpha t = 2 \, \text{rad/s} + 4t \\
\end{align*}
\]

\[
\begin{align*}
\alpha & = \omega'' = \omega' + \alpha = 2 + 4t + 4t = 6t + 2 \\
\end{align*}
\]

\[
\begin{align*}
\theta & = \int \omega dt = \int (2 + 4t) dt = 2t + 2t^2 \\
\end{align*}
\]

\[
\begin{align*}
\theta & = \int \alpha dt = \int (6t + 2) dt = 3t^2 + 2t \\
\end{align*}
\]

\[
\begin{align*}
\vec{r}_B & = \vec{r}_A + \vec{r}_{AB} = (2 + 2t) \hat{i} + (3t^2 + 2t) \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_B & = \vec{a}_A + \vec{a}_{AB} = 6t + 2 \hat{i} + 6t \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_A & = \vec{a}' + \vec{a}_{AB} = \omega' \times \vec{r}_A + \vec{a}_{AB} = 6t \hat{i} + 2 \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_{AB} & = \vec{a}_B - \vec{a}_A = (6t + 2 - 6t) \hat{i} + (6t - 2) \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_{AB} & = 6t(\hat{i} - \hat{j}) \\
\end{align*}
\]

16-110. At a given instant the wheel is rotating with the angular motion shown. Determine the acceleration of the collar at \(A \) at this instant.

\[
\begin{align*}
\theta & = \theta_0 + \omega_0 t + \alpha_0 t^2 = 90 - 0.1t + 0.7t^2 \\
\omega & = \omega_0 + \alpha_0 t = -0.2 + 0.7t \\
\end{align*}
\]

\[
\begin{align*}
\alpha & = \omega' = 0.7 \, \text{rad/s}^2 \\
\end{align*}
\]

\[
\begin{align*}
\vec{r}_A & = (r \cos \theta) \hat{i} + (r \sin \theta) \hat{j} = (1.2 \cos (90 - 0.1t + 0.7t^2)) \hat{i} + (1.2 \sin (90 - 0.1t + 0.7t^2)) \hat{j} \\
\vec{v}_A & = \vec{v}' + \vec{v}_{AB} = \omega \times \vec{r}_A + \vec{v}_{AB} \\
\vec{a}_A & = \vec{a}' + \vec{a}_{AB} = \alpha \times \vec{r}_A + \vec{a}_{AB} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_{AB} & = \vec{a}_A - \vec{v}_A = (\alpha \times \vec{r}_A - \omega \times \vec{r}_A) + \vec{a}_{AB} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_{AB} & = (0.7 \times 1.2 \cos (90 - 0.1t + 0.7t^2)) \hat{i} - (0.7 \times 1.2 \sin (90 - 0.1t + 0.7t^2)) \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_{AB} & = (2.1 \cos (90 - 0.1t + 0.7t^2)) \hat{i} - (2.1 \sin (90 - 0.1t + 0.7t^2)) \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{v}_A & = \vec{v}' + \vec{v}_{AB} = \omega \times \vec{r}_A + \vec{v}_{AB} \\
\end{align*}
\]

\[
\begin{align*}
\vec{v}_A & = (\omega \times \vec{r}_A - \omega \times \vec{r}_A) + \vec{v}_{AB} \\
\vec{v}_A & = (0.7 \times 1.2 \sin (90 - 0.1t + 0.7t^2)) \hat{i} - (0.7 \times 1.2 \cos (90 - 0.1t + 0.7t^2)) \hat{j} \\
\vec{v}_A & = (2.1 \sin (90 - 0.1t + 0.7t^2)) \hat{i} - (2.1 \cos (90 - 0.1t + 0.7t^2)) \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_{AB} & = (2.1 \cos (90 - 0.1t + 0.7t^2)) \hat{i} - (2.1 \sin (90 - 0.1t + 0.7t^2)) \hat{j} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_{AB} & = (2.1 \times 1.2 \cos (90 - 0.1t + 0.7t^2)) \hat{i} - (2.1 \times 1.2 \sin (90 - 0.1t + 0.7t^2)) \hat{j} \\
\vec{a}_{AB} & = (2.52 \cos (90 - 0.1t + 0.7t^2)) \hat{i} - (2.52 \sin (90 - 0.1t + 0.7t^2)) \hat{j} \\
\vec{a}_{AB} & = (2.52 \cos (90 - 0.1t + 0.7t^2)) \hat{i} - (2.52 \sin (90 - 0.1t + 0.7t^2)) \hat{j} \\
\end{align*}
\]
16-115. The hoop is cast on the rough surface such that it has an angular velocity \(\omega = 4 \text{ rad/s} \) and an angular acceleration \(\alpha = 5 \text{ rad/s}^2 \). Also, its center has a velocity \(v_{c0} = 5 \text{ m/s} \) and a deceleration \(a_{c0} = 2 \text{ m/s}^2 \). Determine the acceleration of point A at this instant.

\[
\begin{align*}
\mathbf{a}_0 &= a_r + a_{c0} \\
\mathbf{a}_0 &= \left[\begin{bmatrix} 2.5 \ \ 1 \ \ 5 \end{bmatrix} \right] + \left[\begin{bmatrix} 10 \ \ 0 \ \ 31 \end{bmatrix} \right] \\
\mathbf{a}_0 &= \left[\begin{bmatrix} 3.5 \ \ 1 \ \ 36.5 \end{bmatrix} \right] \\
a_r &= 5.04 \text{ m/s}^2 \\
\theta &= \tan^{-1} \left(\frac{4.38}{3.5} \right) = 53.9^\circ \quad \text{Ans}
\end{align*}
\]

Also:

\[
\begin{align*}
\mathbf{a}_0 &= a_r + a_{c0} \\
a_r &= -4 \omega^2 T_{c0} + \alpha \times T_{c0} \\
a_r &= -20 - (4 \times \omega^2 T_{c0} + 5 \mathbf{k} \times (0,0,0)) \\
a_r &= -3.5 - 4.8 \text{ m/s}^2 \\
a_r &= 5.04 \text{ m/s}^2 \\
\theta &= \tan^{-1} \left(\frac{4.38}{3.5} \right) = 53.9^\circ \quad \text{Ans}
\end{align*}
\]

16-116. The hoop is cast on the rough surface such that it has an angular velocity \(\omega = 4 \text{ rad/s} \) and an angular acceleration \(\alpha = 5 \text{ rad/s}^2 \). Also, its center has a velocity of \(v_{c0} = 5 \text{ m/s} \) and a deceleration \(a_{c0} = 2 \text{ m/s}^2 \). Determine the acceleration of point B at this instant.

\[
\begin{align*}
\mathbf{a}_0 &= a_r + a_{c0} \\
\mathbf{a}_0 &= \left[\begin{bmatrix} 2.5 \ \ 0 \ \ 5 \end{bmatrix} \right] + \left[\begin{bmatrix} 10 \ \ 0 \ \ 31 \end{bmatrix} \right] \\
\mathbf{a}_0 &= \left[\begin{bmatrix} 3.5 \ \ 0 \ \ 36.5 \end{bmatrix} \right] \\
a_r &= 6.21 \text{ m/s}^2 \\
\theta &= \tan^{-1} \left(\frac{4.455}{4.335} \right) = 43.8^\circ \quad \text{Ans}
\end{align*}
\]

Also:

\[
\begin{align*}
\mathbf{a}_0 &= a_r + a_{c0} \\
a_r &= -4 \mathbf{k} \times T_{c0} - \omega^2 T_{c0} \\
a_r &= -70 \times \mathbf{k} \times (0.3 \cos 45^\circ - 0.3 \sin 45^\circ) = (42)(0.1 \cos 45^\circ - 0.1 \sin 45^\circ) \\
a_r &= -43.35 \text{ m/s}^2 \\
a_r &= 6.21 \text{ m/s}^2 \\
\theta &= \tan^{-1} \left(\frac{4.455}{4.335} \right) = 43.8^\circ \quad \text{Ans}
\end{align*}
\]
At a given instant, the gear has the angular motion shown. Determine the accelerations of point A and B on the link and the link’s angular acceleration at this instant.

For the gear:
\[\alpha_t = \omega_{rev} = 6(12) = 72 \text{ in/a}^2 \]
\[\alpha_t = -2(12)(-50) = 1200 \text{ in/a}^2 \]
\[\alpha_t = \omega_0 + \alpha t = 72 + 6t \]
\[\alpha_t = \frac{d}{dt} \left(\alpha_t \right) = 6 \text{ rad/a}^2 \]
\[\theta = \alpha_0 t + \frac{1}{2} \alpha t^2 = 72t + 3t^2 \text{ rad} \]

For link AB:
The F/C is 0, so \(a_{AB} = 0 \), i.e.,
\[\alpha_B = \frac{d}{dt} \left(\theta - \theta_0 \right) = 6 \]
\[a_{BA} = -\omega_{AB} \times, \quad \omega_{AB} = (18000 \text{ rad} + 18000 \text{ rad}^3) \text{ rad} \]
\[a_{BA} = \frac{d}{dt} \left(-\omega_{AB} \right) = -6 \text{ rad/a}^2 \]
\[\alpha_B + \omega_{AB} \times = \frac{d}{dt} \left(\alpha_B + \omega_{AB} \right) = (18000 + 18000 \text{ rad}) \]
\[\alpha_B = -12 \text{ rad/a} \]
\[r_{BA} = 18 \text{ rad/a}^2 \]
16-133. The man stands on the platform at \(P \) and runs out toward the edge such that when he is at \(A \), \(y = 5 \text{ ft} \). His mass center has a velocity of 2 ft/s and an acceleration of 5 ft/s², both measured with respect to the platform and directed along the \(y \)-axis. If the platform has the angular motion shown, determine the velocity and acceleration of his mass center at this instant.

\[
\begin{align*}
v_y &= v_0 + (\alpha \times r)_{\text{cm}} + (\omega \times v)_{\text{cm}} \\
v_y &= 2 \text{ ft/s} \times (0.25 \text{ rad/s}) \times 5 \text{ ft} \\
v_y &= 2 \text{ ft/s} + 1.25 \text{ ft/s} = 3.25 \text{ ft/s} \\
\alpha &= 0 \text{ rad/s}^2 + 2 \text{ rad/s}^2 = 2 \text{ rad/s}^2 \\
a_y &= 0 \text{ ft/s}^2 + 5 \text{ ft/s}^2 = 5 \text{ ft/s}^2 \\
a_x &= 0 \text{ ft/s}^2 + 0 \text{ ft/s}^2 = 0 \text{ ft/s}^2 \\
a_x &= 2 \text{ ft/s}^2 - 5 \text{ ft/s}^2 = -3 \text{ ft/s}^2
\end{align*}
\]

\[\text{Ans}\]

16-134. Block \(B \) moves along the slot in the platform with a constant speed of 2 ft/s, measured relative to the platform in the direction shown. If the platform is rotating at a constant rate of \(\omega = 5 \text{ rad/s} \), determine the velocity and acceleration of the block at the instant \(\theta = 60^\circ \).

\[
\begin{align*}
t_{\text{cm}} &= \frac{2 \text{ ft}}{\cos 60^\circ} = 4 \text{ ft} \\
t_r &= v_0 + \omega \times r + (\omega \times v)_{\text{cm}} \\
t_r &= 2 \text{ ft/s} + (5 \text{ rad/s}) \times (4 \text{ ft}) \\
t_r &= 2 \text{ ft/s} + 20 \text{ ft/s} = 22 \text{ ft/s} \\
t_r &= (-12.01, 5.71) \text{ ft/s} \\
\alpha &= 0 \text{ rad/s}^2 + 2 \text{ rad/s}^2 = 2 \text{ rad/s}^2 \\
a_r &= 0 \text{ ft/s}^2 + 10 \text{ ft/s}^2 = 10 \text{ ft/s}^2 \\
a_r &= 0 \text{ ft/s}^2 + 20 \text{ ft/s}^2 = 20 \text{ ft/s}^2 \\
a_r &= 20 \text{ ft/s}^2 - 30 \text{ ft/s}^2 = 10 \text{ ft/s}^2
\end{align*}
\]

\[\text{Ans}\]
A girl stands at A on a platform which is rotating with a constant angular velocity $\omega = 0.5 \text{ rad/s}$. If she walks at a constant speed of $v = 0.75 \text{ m/s}$ measured relative to the platform, determine her acceleration (a) when she reaches point D in going along the path ABC, $r = 1 \text{ m}$; and (b) when she reaches point B if she follows the path ABC, $r = 3 \text{ m}$.

\[a_y = a_y + \dot{\omega} \times r_y + \dot{r} \times (\dot{r} \times r_y) + 2 \ddot{r} \times (\dot{r} \times r_y) + \dddot{r} \times (r_y + \dot{r} \times r_y) \]

\[\dot{\omega} = 0 \text{ rad/s} \]

\[\dot{r} = (0.75) \text{ m/s} \]

\[\ddot{r} = 0 \text{ m/s}^2 \]

Substitute the data into Eq.(1):

\[a_y = 0 + (0.75)(0.75) + (0.75)(0.75) + 0 = 1.125 \text{ m/s}^2 \]

\[\omega = \sqrt{\ddot{r} \times (\dot{r} \times r_y)} = \sqrt{(0.75)^2} = 0.75 \text{ rad/s} \]

\[r = 0 \text{ m} \]

\[\dot{r} = (0.75) \text{ m/s} \]

\[\ddot{r} = 0 \text{ m/s}^2 \]

Substitute the data into Eq.(2):

\[a_y = 0 + (0.75)(0.75) + (0.75)(0.75) + 0 = 1.125 \text{ m/s}^2 \]
Rod AB rotates counterclockwise with a constant angular velocity $\omega = 3 \text{ rad/s}$. Determine the velocity and acceleration of point C located on the double collar when $\theta = 45^\circ$. The collar consists of two pin-connected slider blocks which are constrained to move along the circular path and the rod AB.

$$v_C = (0.40m + 0.40m)$$
$$v_C = -v_A$$
$$v_C = v_x + \Omega \times r_{CA}$$
$$v_C = 0 + (0.40m + 0.40m) + (v_x + 0.40m + 0.40m)$$
$$2v_x = 0 - 1.2m + 1.2m = 0.20\text{m/s}$$
$$v_x = 0.10\text{m/s}$$
$$v_y = -1.20 + 0.70\text{m/s}$$
$$v_y = 0.50\text{m/s}$$
$$v_y = 2.40 \text{m/s}$$
$$a_y = 1.87m/s^2$$
$$a_y = 2v_x + \Omega \times r_{CA} + \Omega \times (\Omega \times r_{CA}) + \Omega \times (\Omega \times r_{CA})$$
$$a_y = 0 + 0 + 30 + 0.20 + 0.12\text{m/s}^2$$
$$a_y = 3.32\text{m/s}^2$$
$$a_y = 3.32 + 3.20 = 6.52\text{m/s}^2$$
$$a_y = 6.52 = 380 + 0.70\text{m/s}^2$$
$$a_y = 6.52 = 3.80 + 1.20 + 0.70\text{m/s}^2$$
$$v_{CA} = 2.00\text{m/s}$$
$$a_{CA} = 0$$

Thus,
$$a_y = a_{CA} = 1.87\text{m/s}^2$$
$$a_y = 1.87 \text{m/s}^2$$
$$a_y = (-14.44) \text{m/s}^2$$