Chapter 15
Extrusion and Drawing of Metals

Alexandra Schönning, Ph.D.
Mechanical Engineering
University of North Florida

Figures by
Manufacturing Engineering and Technology
Kalpakjian and Schmid

Introduction

What is extrusion of metals?
- Forcing of a billet through a die
- Can create solid and hollow cross sections
- A semi-continuous process (each billet is extruded)
- Can produce products with a consistent diameter

What is drawing of metals?
- Changing or reduction of the cross section of a rod, wire, or tube by pulling it through a die

What products are made using drawing?
- Rivets, bolts, screws
- Round and non-round profiles

What is the difference between extrusion and drawing?
- Extrusion involves pushing the material, while drawing involves pulling.

Example of products made using extrusion

Figure 15.2 Extrusions, and examples of products made by sectioning off extrusions. Source: Kaiser Aluminum.

The extrusion process

Names of the process
- Extrusion
- Direct extrusion
- Forward extrusion

What are the process steps?
- Round billet is placed in a chamber
- The billet is forced through the die using a hydraulically driven ram or a pressing stem
- Die opening may have round or non-round cross section

Other types of extrusion processes
- Indirect extrusion
- The die moves toward the billet
- Hydrostatic extrusion
- The billet is smaller in diameter than the chamber
- The pressure is supplied by a ram
- Friction is low
- Impact extrusion

Extrusion Variables

Geometric Variables
- Die angle, \(\alpha \)
- Extrusion Ratio: \(R = \frac{A_o}{A_f} \) Ratio of the cross sectional area of the billet to the A of the extruded part
- Circumferential circle diameter (CCD)
- Diameter of the smallest circle that the cross section can fit within.
- Shape factor
- One of the variables determining the complexity of extrusion
- Ratio of perimeter of extruded product to the cross sectional

Temperature
- Speed of ram
- Lubricant type

Extrusion Force

The extrusion force required depends on
- Billet material strength
- Extrusion ratio
- Friction billet/chamber and billet/die
- Temperature
- Speed

\(F = A_o \cdot k \cdot \ln \left(\frac{A_o}{A_f} \right) \)

\(k = \) extrusion constant

Metal and temperature dependent
Metal Flow in Extrusion

- Effects the mechanical properties of the part
- The metal flows longitudinally, resulting in an elongated grain structure

![Dead zone](a) Metal at corners is almost stationary

Extrusion Practice

- What materials are extruded?
 - Aluminum, copper, magnesium, alloys, steels
 - Extrusion ratio \(R = \frac{A_i}{A_f} \)
 - 10 to 100
 - Lower for less ductile materials
 - Length of extruded materials
 - > 7.5 meters typically
 - 30 meters max
 - CCD (circum scribed diameters)
 - 8 mm – ins for Aluminum
- Dead zone
- Metal at corners is almost stationary

- Die angle causes a butt end
- Strain hardening required for small cross sections
- Cuts off as scrap

Why hot extrusion?
- For metals that don’t have sufficient ductility at room temperature
- Reduce the required extrusion force

Disadvantages and problems
- Die wear due to high operating temperatures
- Cooling the billet in the chamber – non-uniform extrusion
- Reduce effects of problem by heating the die prior to extrusion
- Oxide film develops on surface
 - May be abrasive
 - Affects the flow pattern of the metal
 - Remove this problem by using a dummy block in front of the ram
- Oxidized layer is left in the container
- Reduce/remove this problem by heating the billet in an inert-atmosphere furnace

Hot Extrusion

- Why hot extrusion?
 - For metals that don’t have sufficient ductility at room temperature
 - Reduce the required extrusion force
- Disadvantages and problems
 - Die wear due to high operating temperatures
 - Cooling the billet in the chamber – non-uniform extrusion
 - Reduce effects of problem by heating the die prior to extrusion
 - Oxide film develops on surface
 - May be abrasive
 - Affects the flow pattern of the metal
 - Remove this problem by using a dummy block in front of the ram
 - Oxidized layer is left in the container
 - Reduce/remove this problem by heating the billet in an inert-atmosphere furnace

Cold Extrusion

- Metal divides and flows around the supports of the internal mandrel.
- This results in strands
- Rewelding of the strands occur within the chamber after the supports and before the die
- High pressure makes this possible

Hollow Sections

- Welding chamber methods using special dies.
- How does this method work?
 - Metal divides and flows around the supports of the internal mandrel.
 - This results in strands
 - Rewelding of the strands occur within the chamber after the supports and before the die
 - High pressure makes this possible

- What materials does this work for?
 - Materials that reweld well under high pressure
 - Aluminum
 - Lubricants can’t be used
 - Prevents rewelding

Die Designs and Die Materials

- Square dies
 - Used for non-ferrous metals
 - Dead metal zones develop
 - Creates a die angle
- Die design: tapered

Die Materials

- Tubes
 - Created by fitting a mandrel to the ram
 - Wall thickness, typically
 - > 1 mm Al
 - > 3 mm carbon steel
 - > 5 mm stainless steels

Good vs. Bad Cross Section

- Important
 - Symmetry of cross section
 - Eliminate sharp corners
 - Keep section thickness uniform
 - Avoid extreme change in the dimensions of the cross section

Die Materials and Lubrication

- **Die materials**
 - Hot worked die steels
 - Coatings may be applied to extend life
- **Lubrication**
 - Glass: a glass cylinder is placed in the die entrance of the chamber. The billet heats the glass and the molten glass acts as a lubricant at the die interface.
 - Jacketing or canning
 - If the metal is likely to stick to the container walls, then the billet can be enclosed by a thin-walled container of a softer metal.

Cold Extrusion

- Often involves different manufacturing operations such as direct and indirect extrusion and forging.
- **Used in making**
 - Tools and components in cars, motorcycles, bicycles, appliances...
- **Advantages over hot extrusion**
 - Improved mechanical properties through work-hardening
 - Good control of dimensional tolerances
 - Improved surface finish
 - Elimination of need for billet heating
- **Disadvantages**
 - Stress magnitudes on the tools are high
 - Wears the die
- **Lubrication**
 - Applied to the workpiece

Examples of Cold Extrusion

![Workpiece](image)

Impact Extrusion

- Typically considered a cold extrusion process
- **Components**
 - Die
 - Blank (or slug)
 - Punch
- **Punch forces the blank to extrude backward**

Hydrostatic Extrusion

- Incompressible fluid surrounds the billet
 - Vegetable oils are used
- **Billet is a little smaller than the container**
- **Usually at room temperature**
- **Advantage**
 - No container wall friction
 - Brittle materials can be extruded using this method since the ductility increases with the hydrostatic pressure
 - Small die angles and high extrusion ratios can be used
- **Disadvantage**
 - Tooling is complex
 - Results in minimal industrial applications

Extrusion Defects

- **Surface cracking**
 - At high temperatures:
 - Resulting from too high temperature, friction, speed
 - Surface starts to crack and then tears
- **At lower temperatures**
 - Bamboo defect
 - The billet may temporarily stick, the pressure increases and the billet moves forward
- **Pipe effect**
 - Surface oxides and impurities are drawn to the center of the billet (like a funnel)
 - Minimize by making the flow pattern more uniform (reduce friction and temperature gradients)
- **Internal Cracking**
 - Due to tensile stresses at the center line in the deformation zone
 - Tendency of center cracking
 - Increases with increased die angle
 - Increases with increased amount of impurities
 - Decreases with increasing extrusion ratio and friction
Extrusion Equipment

- Most common are horizontal hydraulic presses
 - Speed of the operation can be controlled
- Cold extrusion
 - Typically vertical hydraulic presses
 - More economical as they require less floor space

The Drawing Process

- What is it?
 - The cross-section of a round wire/rod is reduced in size or changed in shape by pulling it through a die.
- Variables
 - Amount of reduction in cross-sectional area
 - Die angle
 - Optimum angle for minimum drawing force can be computed.
 - Other product quality dimensions—may require a different angle.
 - Friction along die/workpiece
 - Drawing speed

- Drawing force (F)
 \[F = \frac{A_o Y_{avg}}{A_f} \cdot \ln \frac{A_f}{A_o} \]

Drawing Process / Practice

- Drawing of other shapes
 - Initial cross section is typically round or square
 - Mandrels can be used for internal cavities
 - Ironing can be used to obtain flat sheets (a wedge shaped die is used)

Die Design

- Die angles usually range from 6° to 15°
- Typically have two angles: approach and relieve angle
 - Basic design has been developed through trial and error
 - The land gives the final dimension of the product
 - Bundle drawing
 - Numerous wires can be drawn at the same time.
 - Can result in wires as fine as 4µm.

Lubrication

- Wet drawing
 - Dies and the rods are completely immersed in the lubricant
- Dry drawing
 - The surface of the rod is coated with the lubricant (soap)
- Coating
 - Rod or wire is coated with a soft metal acting as lubricant
 - Ultrasonic vibration of the dies and mandrel
 - Reduce forces, improve surface finish, and improve die life

Defects and Residual Stresses

- Defects
 - Similar to those of extrusion
 - Common is center cracking
 - Seams are common
 - Longitudinal scratches or folds in the material

- Residual Stresses
 - Common in cold drawn products
 - Sometimes to an advantage; sometimes to a disadvantage
 - Warping may occur if material is removed
Drawing Equipment

- **Draw bench**
 - A single die
 - Used for diameters > 20 mm
 - Lengths < 30 m

- **Bull block**
 - Usually multiple dies are used
 - Lengths = several kilometers

Roll Straightening

Figure 15.22: Schematic illustration of roll straightening of a drawn round rod (see also Fig. 13.7).