Aggregating Lexicographic Preferences Over Combinatorial Domains

Xudong Liu

Department of Computer Science
University of Kentucky
Lexington, KY, USA

November 6, 2013
A group of students at UK are deciding on a joint vacation in 2014 and they may consider the following issues:

- Time
- Destination
- Transportation
Multi-Agent Decision Making

(a) Domain of Time

(b) Preference

Figure: Time
Multi-Agent Decision Making

(a) Domain of Destination

(b) Preference

Figure: Destination
Multi-Agent Decision Making

(a) Domain of Transportation

(b) Preference

Figure: Transportation
Aggregating agents’ individual preferences over alternatives to achieve collaborative decisions.

1. Alternatives: *combinatorial* domains
2. Individual preferences: *lexicographic preference trees (LP trees)*
3. Aggregation: based on *positional scoring voting rules*
4. Collaborative decisions: alternatives with the highest score
1 Issues: $X = \{X_1, X_2, \ldots, X_p\}$, with $D(X_i) = \{0_i, 1_i\}$
2 Alternatives: $\mathcal{X} = D(X_1) \times D(X_2) \times \ldots \times D(X_p)$, $|\mathcal{X}| = 2^p$ (denoted by m)
3 Vote: a strict total order over \mathcal{X}
4 Profile: a finite set of votes collected from n voters

Figure: Alternatives in the vacation planning problem
1. Scoring vector: \(w = (w_1, \ldots, w_m) \) of non-negative integers, where \(w_1 \geq w_2 \geq \ldots \geq w_m \) and \(w_1 > w_m \).

2. Let \(v = o_1 \succ o_2 \succ \ldots \succ o_m \) be a vote over \(X \), the score of alternative \(o_i \) in vote \(v \) is \(w_i \), denoted by \(s_w(o_i, v) \).

3. Let \(P \) be a profile of votes, the score of alternative \(o_i \) in profile \(P \):
\[
 s_w(o_i, P) = \sum_{v \in P} s_w(o_i, v)
\]
Positional Scoring Rules

- **k**-approval: \((1, \ldots, 1, 0, \ldots, 0)\) with \(k\) being the number of 1’s and \(m - k\) the number of 0’s where \(m = 2^p\)
- Borda: \((m - 1, m - 2, \ldots, 1, 0)\)
- \((k, l)\)-approval: \((a, \ldots, a, b, \ldots, b, 0 \ldots, 0)\), where \(a\) and \(b\) are constants \((a > b)\) and the numbers of \(a\)’s and \(b\)’s equal to \(k\) and \(l\), respectively
Lexicographic Preference Trees (LP Trees)

1. An LP tree \mathcal{L} over $\mathcal{I} = \{X_1, \ldots, X_p\}$ is a binary tree.
2. Each node t in \mathcal{L} is labeled by an issue from \mathcal{I} and with preference information ($0 > 1$ or $1 > 0$).
3. Each issue appears exactly once on each path from the root to a leaf.

$D(\text{Time}) = \{\text{summer}(s), \text{winter}(w)\}$, $D(\text{Dest}) = \{\text{Chicago}(c), \text{Miami}(m)\}$, $D(\text{Tran}) = \{\text{drive}(d), \text{fly}(f)\}$
$D(\text{Time}) = \{\text{summer}(s), \text{winter}(w)\}$, $D(\text{Dest}) = \{\text{Chicago}(c), \text{Miami}(m)\}$, $D(\text{Tran}) = \{\text{drive}(d), \text{fly}(f)\}$

Figure: LP tree

$s \succ w$

$c \succ m$

$f \succ d$

$d \succ f$

$f \succ d$

$m \succ c$

$m \succ c$

$scd \succ scf \succ smf \succ smd \succ wmf \succ wcf \succ wmd \succ wcd$
Collapsed LP Trees

\[D(\text{Time}) = \{\text{summer}(s), \text{winter}(w)\} \]
\[D(\text{Dest}) = \{\text{Chicago}(c), \text{Miami}(m)\} \]
\[D(\text{Tran}) = \{\text{drive}(d), \text{fly}(f)\} \]

(a) Full LP tree

(b) Collapsed LP tree

Figure: Collapse to UI-UP
Collapsed LP Trees

\[D(Time) = \{ \text{summer}(s), \text{winter}(w) \}, \quad D(Dest) = \{ \text{Chicago}(c), \text{Miami}(m) \}, \quad D(Tran) = \{ \text{drive}(d), \text{fly}(f) \} \]

(a) Full LP tree

(b) Collapsed LP tree

Figure: Collapse to UI-CP
Collapsed LP Trees

\[D(Time) = \{summer(s), winter(w)\} \]
\[D(Dest) = \{Chicago(c), Miami(m)\} \]
\[D(Tran) = \{drive(d), fly(f)\} \]

(a) Full LP tree

(b) Collapsed LP tree

Figure: Collapse to CI-UP
Collapsed LP Trees

\[D(\text{Time}) = \{\text{summer}(s), \text{winter}(w)\}, \quad D(\text{Dest}) = \{\text{Chicago}(c), \text{Miami}(m)\}, \]
\[D(\text{Tran}) = \{\text{drive}(d), \text{fly}(f)\} \]

Figure: Collapse to CI-CP
The Evaluation Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP trees. Given a \mathcal{C}-profile P of n LP trees over p issues and a positive integer R, the evaluation problem is to decide whether there exists an alternative $o \in \mathcal{X}$ such that $s_w(o, P) \geq R$.

The Winner Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP trees. Given a \mathcal{C}-profile P of n LP trees over p issues, the winner problem is to compute an alternative $o \in \mathcal{X}$ with the maximum score $s_w(o, P)$.
Computational Complexity

- The computational complexity of the winner and the evaluation problems has *not* been fully understood.
- With known results for some special cases, we aim at expanding the space of known results for *more general* positional scoring rules.
- All computational complexity results and algorithms assume *compact* representations of LP trees.
If k is fixed or $k = 2^{p-1} \pm f(p)$, where $f(p)$ is a polynomial of p, we have

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CI</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

(a) Evaluation

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CI</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

(b) Winner

Figure: k-approval

2 The case where $f(p) = 0$ is shown by Lang, Mengin, and Xia. *Aggregating conditionally lexicographic preferences on multi-issue domains*, 2012. Other cases are new results we obtained.
if $k = c \cdot 2^{p-M}$ (c and M are constants) and $k \neq 2^{p-1}$, we have

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>NPC</td>
<td>NPC</td>
</tr>
<tr>
<td>CI</td>
<td>NPC</td>
<td>NPC</td>
</tr>
</tbody>
</table>

(a) Evaluation

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>NP-Hard</td>
<td>NP-Hard</td>
</tr>
<tr>
<td>CI</td>
<td>NP-Hard</td>
<td>NP-Hard</td>
</tr>
</tbody>
</table>

(b) Winner

Figure: k-approval

3 Lang, Mengin, and Xia. *Aggregating conditionally lexicographic preferences on multi-issue domains*, 2012.
Computational Complexity: Borda

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>P</td>
<td>NPC</td>
</tr>
<tr>
<td>CI</td>
<td>NPC</td>
<td>NPC</td>
</tr>
</tbody>
</table>

(a) Evaluation

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>P</td>
<td>NP-Hard</td>
</tr>
<tr>
<td>CI</td>
<td>NP-Hard</td>
<td>NP-Hard</td>
</tr>
</tbody>
</table>

(b) Winner

Figure: Borda

\[^4\text{Lang, Mengin, and Xia. } Aggregating conditionally lexicographic preferences on multi-issue domains, 2012.}\]
Our research considers yet another class of positional scoring rules: \((k, l)\)-approval

\((2^{p-2}, 2^{p-2})\)-Approval Evaluation Problem

Let \(w\) be the scoring vector for \((2^{p-2}, 2^{p-2})\)-approval. The problem to decide for a given \(UI-UP\) profile \(P\) and a given positive integer \(R\) whether there is an alternative \(o\) such that \(s_w(P, o) \geq R\) is NP-complete.

Proof.

Hardness follows from a polynomial reduction from the NP-complete problem \(MIN\ 2-SAT\) \(^5\).

\(^5\) Given a set \(\Phi\) of 2-clauses and a positive integer \(l\), the problem is to decide if there is an assignment satisfying at most \(l\) clauses in \(\Phi\).
If $k = l = 2^{p-2}$ or $k = l = 2^{p-3}$, we have

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>NPC</td>
<td>NPC</td>
</tr>
<tr>
<td>CI</td>
<td>NPC</td>
<td>NPC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>NP-Hard</td>
<td>NP-Hard</td>
</tr>
<tr>
<td>CI</td>
<td>NP-Hard</td>
<td>NP-Hard</td>
</tr>
</tbody>
</table>

(a) Evaluation
(b) Winner

Figure: (k, l)-approval

Computational methods need to be implemented and tested to see how problems with different settings of parameters could be handled.

ASP and W-MAXSAT tools are chosen because they are designed to address NP-hard problems.

Our goal is to understand the scope of applicability of the solvers and compare their effectiveness.
Modeling the Problems in ASP

Figure: The winner problem

- Solvers: clingo, clingcon
Modeling the Problems in ASP

Figure: The evaluation problem

- Solvers: clingo, clingcon
Modeling the Winner Problem as a W-MAXSAT Problem

Weighted Maximum Satisfiability Problem (W-MAXSAT)

Let X be a set of boolean variables $\{X_1, \ldots, X_p\}$, Φ a set of weighted clauses $\{c_1 : w_1, \ldots, c_n : w_n\}$ over X, where each w_i is a positive integer, the problem is to find a truth assignment over X to maximize the sum of weights of satisfied clauses in Φ.

- **Solver:** *toulbar*
Modeling the Winner Problem as a W-MAXSAT Problem

Figure: The winner problem
Random LP Profiles

To experiment with LP profiles, we developed methods to randomly generate *encodings* of a special type of CI-CP LP tree of size linear in the number of issues.

![Random LP tree diagram]

Figure: Random LP tree

<table>
<thead>
<tr>
<th>0_i</th>
<th>0_r > 1_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_i</td>
<td>1_r > 0_r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0_j 0_k</th>
<th>0_s > 1_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_j 1_k</td>
<td>1_s > 0_s</td>
</tr>
<tr>
<td>1_j 0_k</td>
<td>0_s > 1_s</td>
</tr>
<tr>
<td>1_j 1_k</td>
<td>1_s > 0_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>0_i</th>
<th>0_r > 1_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_i</td>
<td>1_r > 0_r</td>
<td></td>
</tr>
</tbody>
</table>
The winner problem:
- fix the number of issues (10) and increase the number of votes in a profile (up to 3000)
- fix the number of votes in a profile (1000) and increase the number of issues (up to 25)

The evaluation problem: for a randomly generated profile (1000 votes), computed winning score \(WS \) and solved the evaluation problem with various thresholds (percentages of \(WS \)): \(\{5\% \cdot WS, \ 10\% \cdot WS, \ldots, 100\% \cdot WS, \ WS + 1\} \)
Varying p and n: 2^{p-2}-approval

![Graphs showing mean time vs. number of votes and issues](image)

(a) Fixed #issues (10)

(b) Fixed #votes (1000)

Figure: Solving the winner problem
Varying p and n: $(2^{p-2}, 2^{p-2})$-approval

Figure: Solving the winner problem

(a) Fixed #issues (10)

(b) Fixed #votes (1000)

7 scoring vector: $(2, \ldots, 2, 1, \ldots, 1, 0, \ldots, 0)$ with the numbers of 2's and 1's equal to 2^{p-2}
Varying p and n: Borda

Figure: Solving the winner problem
The formalism of *lexicographic preference trees* is a **concise** representation of preferences over combinatorial domains

- natural way to express preferences
- induce total orders
- easily compute rank of a given alternative

Computational complexity of the winner and evaluation problems has yet been fully studied

- polynomial time algorithms

ASP and W-MAXSAT are **effective** in modeling and solving the problems even for 1000 votes over up to 22 issues (about 4 million alternatives)

- W-MAXSAT solver *toulbar* is better than ASP solvers for 2^{p-2}-approval and $(2^{p-2}, 2^{p-2})$-approval
- ASP solvers *clingo* and *clingcon* are better than *toulbar* for Borda
Future Work

1. Generate richer classes of random LP trees
2. Aggregate preferences in other formalisms, such as conditional preference networks (CP-nets) \(^8\) and answer set optimization preferences \(^9\)

The slides are available at www.cs.uky.edu/~liu

Appendix: LP Trees vs Total Orders

LP Trees and Total Orders

Every LP tree over \mathcal{I} can be represented by a total order over \mathcal{X}, but not vice versa.

For example, $00 \succ 11 \succ 01 \succ 10$ cannot be translated to an LP tree.
Appendix: The Score Problem

Let r be a positional scoring rule with a scoring vector w. Given a profile P of n LP trees over p issues, an alternative $o \in \mathcal{X}$ and a positive integer T, the score problem is to decide whether $s_w(P, o) \geq T$.
Appendix: The Score Problem

For all positional scoring rules, we have

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>(O(np))</td>
<td>(O(np))</td>
</tr>
<tr>
<td>CI</td>
<td>(O(np))</td>
<td>(O(np))</td>
</tr>
</tbody>
</table>

Figure: The score problem \(^\text{10}\)

Appendix: Effective Implicit

Effective Implicit Positional Scoring Rules

Let r be a positional scoring rule, and w its underlying scoring vector. Rule r is *effective implicit* if, given m and i ($1 \leq i \leq m$), there is an algorithm that computes the value w_i in time polynomial in the size of m.

- **Borda**: $w_i = m - i$
- **k-approval**: if $i \leq k$, $w_i = 1$; otherwise, $w_i = 0$
- **(k, l)-approval**: if $i \leq k$, $w_i = a$; if $k \leq i \leq l$, $w_i = b$; otherwise, $w_i = 0$