Exercise 1. You are given vectors $\vec{a} = \langle 1, -2, 2 \rangle$ and $\vec{b} = \langle 2, 0, -3 \rangle$. For what value of t does the vector $\vec{a} + t\vec{b}$ lie in the plane determined by the vectors $\vec{p} = \langle 1, 1, 1 \rangle$ and $\vec{q} = \langle 1, 2, 3 \rangle$?

Hint: Try to use triple scalar product. The final answer is $t = 7$.

Exercise 2. Use properties of the cross product and triple scalar product to simplify the following expressions:

(i) $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{a})$
(ii) $(\vec{a} \times \vec{b}) \cdot \vec{a}$

Exercise 3. You are given the points $A(1, 5, -1)$, $B(3, 2, -2)$ and $C(1, 3, a)$, where a is a real number. Let l be the line determined by A and the vector $\vec{s} = \langle 1, -1, 3 \rangle$. Find the value of a so that the plane determined by A, B and C contains the line l.

Answer: $a = -15$.

Exercise 4. Consider the line $l : \frac{x - 4}{3} = \frac{y + 3}{-4} = \frac{z - 3}{2}$.

Find an equation of the line that passes through the point $(3, 2, 0)$ and is perpendicular to l.

Hint: First, find an equation of the plane containing the point $(3, 2, 0)$ and is perpendicular to l. Use this plane to get the second point on the line perpendicular to l. The final answer is $\frac{x - 3}{4} = \frac{y - 2}{9} = \frac{z - 0}{8}$.

Exercise 5. Let l_1 be defined as the line of intersection of the planes $y = 3$ and $2x + y - z = 6$. Additionally, let the line l_2 be defined as $l_2 : \frac{x - 1}{2} = \frac{y - 1}{2} = \frac{z - 2}{1}$.

Show that the lines l_1 and l_2 belong to the same plane.

Hint: You need to show that l_1 and l_2 intersect at some point or that l_1 and l_2 are parallel. In other words, you need to show that l_1 and l_2 are not skew lines.
Exercise 6. You are given the planes
\[\pi_1 : 2x - y + z = 7, \quad \pi_2 : x - y = 4. \]
Let \(m \) be the line defined as the intersection of the planes \(\pi_1 \) and \(\pi_2 \).
You are also given the line
\[l : \frac{x - 2}{0} = \frac{y + 1}{1} = \frac{z + 1}{4}. \]
Let \(T_1 \) and \(T_2 \) be the points of intersection of \(l \) with the planes \(\pi_1 \) and \(\pi_2 \) respectively. Find the projections of \(T_1 \) and \(T_2 \) onto \(m \).

Hint: First, you need to find \(T_1 \) and \(T_2 \). You should get \(T_1(2, 0, 3) \) and \(T_2(2, -2, 5) \). Then, you need to find the line \(m \), and you will get \(m : \frac{x - 4}{1} = \frac{y - 0}{1} = \frac{z + 1}{4} \). The projection of \(T_1 \) onto \(m \) is the intersection of \(m \) and the plane through \(T_1 \) perpendicular to \(m \). The same holds for \(T_2 \). The final answer is as follows: the projections of \(T_1 \) and \(T_2 \) onto \(m \) are \((2, -2, 1)\) and \((4, 0, -1)\) respectively.

Exercise 7. Consider the plane \(\pi : x - 3y + 2z + 5 = 0 \) and the sphere of radius 12 centered at \((5, -14, 9)\).

(i) Find the point \(P \) on \(\pi \) with the smallest distance from the sphere.
(ii) How far is \(P \) from the center of the sphere?
(iii) How far is \(P \) from the sphere?

Answer: (i) \(P(0, 1, -1) \); (ii) \(5 \sqrt{14} \); (iii) \(5 \sqrt{14} - 12 \).

Exercise 8. Let \(S \) be the sphere with the following properties: the radius of \(S \) is 3, the sphere \(S \) touches the plane \(6x + 3y + 6z = 9 \) at the point \((1, -1, 1)\), and \(S \) is located in the half-space \(6x + 3y + 6z \geq 9 \).

(i) Write an equation of the sphere \(S \).
(ii) Find all intersection points of the sphere \(S \) with the plane \(y = 3 \).

Answer: (i) \((x - 3)^2 + y^2 + (z - 3)^2 = 9 \); (ii) point \((3, 3, 3)\).