References

[A]
V. I. Arnold.
Normal forms of functions near degenerate critical points; the Weyl groups Ak, Dk, Ek, and Lagrangian singularities.
Functional Anal. Appl., 6(4):254-272, 1972.

[Ba1]
T. Banchoff.
Global geometry of polygons I: The theorem of Fabricius-Bjerre.
Proc. Amer. Math. Soc., 45:237-241, 1974.

[Ba2]
T. Banchoff.
Double tangency theorems for pairs of submanifolds.
Springer Lecture Notes in Math., 894:25-48, 1980.

[BaF]
T. Banchoff and F. Farris.
Tangential and normal Euler numbers, complex points and singularities of projections for oriented surfaces in four-space.
Pacific Journal of Mathematics, 161, 1 1993.

[BaGM1]
T. Banchoff, T. Gaffney, and C. McCrory.
Cusps of Gauss Mappings, volume 55 of Research Notes in Mathematics.
Pittman, 1982.

[BaGM2]
T. Banchoff, T. Gaffney, and C. McCrory.
Counting tritangent planes of space curves.
Topology, 24:15-23, 1985.

[BiM]
R. L. Bishop and M. Menn.
Generic surfaces in E4.
Michigan Math. J., 22:117-127, 1975.

[Bl]
Blum, R.
Circles on surfaces in the Euclidean 3-space
Lecture Notes in Mathematics, 792:213-221, 1980.

[BrG]
J. W. Bruce, P. J. Giblin
Curves and Singularities: A Geometric Introduction to Singularity Theory
Cambridge University Press, 1992.

[BrGT1]
J. W. Bruce, P. J. Giblin, and F. Tari.
Families of surfaces: height functions, Gauss maps and duals.
In W.L. Marar, editor, Real and Complex Singularities, volume 333 of Research Notes in Mathematics, pages 148-178. Pittman, 1995.

[BrGT2]
J. W. Bruce, P. J. Giblin, and F. Tari.
Parabolic curves of evolving surfaces.
International Journal of Computer Vision, 17(3):291-306, 1996.

[D]
D. Dreibelbis
A Bitangency Theorem for Surfaces in Euclidean Four-Space
Ph.D. Thesis, Brown University, 1998 Download it.

[F]
Fr. Fabricius-Bjerre.
On the double tangents of plane closed curves.
Math. Scand., 36:83-96, 1962.

[G]
C. G. Gibson
Singluar Points of Smooth Mappings, volume 25 of Research Notes in Mathematics.
Pitman, 1979.

[H]
B. Halpern.
Global theorems for closed plane curves.
Bulletin of the American Mathematical Society, 76:83-96, 1970.

[K]
J. J. Koenderink.
Solid Shape.
MIT Press, 1990.

[L]
J. A. Little.
On singularities of submanifolds of higher dimensional euclidean space.
Ann. Mat. Pura Appl. (Ser. 4A), 83:261-336, 1969.

[MocFR]
D. Mochida, M. C. Romero Fuster, and M. Ruas.
The geometry of surfaces in 4-space from a contact viewpoint.
Geometriae Dedicata, 54:323-332, 1995.

[Mon1]
J. A. Montaldi.
Contact with applications to submanifolds.
PhD thesis, University of Liverpool, 1982.

[Mon2]
J. A. Montaldi.
On contact between submanifolds.
Michigan Math. J., 33:195-199, 1986.

[Mon3]
J. A. Montaldi.
Surfaces in 3-space and their contact with circles.
J. Differential Geom., 22:109-126, 1986.

[NS]
J. J. Nuño Ballesteros and O. Saeki.
Singular surfaces in 3-manifolds, the tangent developable of a space curve and the dual of an immersed surface in 3-space.
In W.L. Marar, editor, Real and Complex Singularities, volume 333 of Research Notes in Mathematics, pages 49-64. Pittman, 1995.

[O1]
T. Ozawa.
On Halpern's conjecture for closed plane curves.
Proc. Amer. Math. Soc., 92(4):554-560, 1984.

[O2]
T. Ozawa.
On the number of tritangencies of a surface in R3.
In D. Ferus, R. B. Gardner, S. Helgason, and U. Simon, editors, Global Differential Geometry and Global Analysis 1984, number 1156 in Lecture Notes in Math., pages 240-253. Springer-Verlag, 1985.

[P1]
I. R. Porteous.
The normal singularities of submanifolds.
J. Differential Geom., 5:543-564, 1971.

[P2]
I. R. Porteous.
Geometric Differentiation.
Cambridge University Press, 1994.

[R]
L Rodriguez.
Geometria das Subvariedades.
Number 26 in Monografias de Mathemática. IMPA, Rio de Janeiro, 1981.

[S]
M. I. N. Smith.
Curvature, singularities, and projections of smooth maps.
PhD thesis, Durham, 1971.

[T]
N. Takeuchi.
A closed surface of genus one cannot have seven circles through each point.
Proc. Amer. Math. Soc., 100 (1987), no. 1, 145-147.

[W]
H. Whitney.
Lectures in Topology.
University of Michigan Press, 1941.


BACK to Dan's Research Page.