**[A]**-
V. I. Arnold.

Normal forms of functions near degenerate critical points; the Weyl groups*A*_{k},*D*_{k},*E*_{k}, and Lagrangian singularities.*Functional Anal. Appl.*, 6(4):254-272, 1972. **[Ba1]**-
T. Banchoff.

Global geometry of polygons I: The theorem of Fabricius-Bjerre.*Proc. Amer. Math. Soc.*, 45:237-241, 1974. **[Ba2]**-
T. Banchoff.

Double tangency theorems for pairs of submanifolds.*Springer Lecture Notes in Math.*, 894:25-48, 1980. **[BaF]**-
T. Banchoff and F. Farris.

Tangential and normal Euler numbers, complex points and singularities of projections for oriented surfaces in four-space.*Pacific Journal of Mathematics*, 161, 1 1993. **[BaGM1]**-
T. Banchoff, T. Gaffney, and C. McCrory.
*Cusps of Gauss Mappings*, volume 55 of*Research Notes in Mathematics*.

Pittman, 1982. **[BaGM2]**-
T. Banchoff, T. Gaffney, and C. McCrory.

Counting tritangent planes of space curves.*Topology*, 24:15-23, 1985. **[BiM]**-
R. L. Bishop and M. Menn.

Generic surfaces in*E*^{4}.*Michigan Math. J.*, 22:117-127, 1975. **[Bl]**-
Blum, R.

Circles on surfaces in the Euclidean 3-space*Lecture Notes in Mathematics*, 792:213-221, 1980. **[BrG]**-
J. W. Bruce, P. J. Giblin
*Curves and Singularities: A Geometric Introduction to Singularity Theory*

Cambridge University Press, 1992. **[BrGT1]**-
J. W. Bruce, P. J. Giblin, and F. Tari.

Families of surfaces: height functions, Gauss maps and duals.

In W.L. Marar, editor,*Real and Complex Singularities*, volume 333 of*Research Notes in Mathematics*, pages 148-178. Pittman, 1995. **[BrGT2]**-
J. W. Bruce, P. J. Giblin, and F. Tari.

Parabolic curves of evolving surfaces.*International Journal of Computer Vision*, 17(3):291-306, 1996. **[D]**-
D. Dreibelbis
*A Bitangency Theorem for Surfaces in Euclidean Four-Space*

Ph.D. Thesis, Brown University, 1998 Download it. **[F]**-
Fr. Fabricius-Bjerre.

On the double tangents of plane closed curves.*Math. Scand.*, 36:83-96, 1962. **[G]**-
C. G. Gibson
*Singluar Points of Smooth Mappings*, volume 25 of*Research Notes in Mathematics*.

Pitman, 1979. **[H]**-
B. Halpern.

Global theorems for closed plane curves.*Bulletin of the American Mathematical Society*, 76:83-96, 1970. **[K]**-
J. J. Koenderink.
*Solid Shape*.

MIT Press, 1990. **[L]**-
J. A. Little.

On singularities of submanifolds of higher dimensional euclidean space.*Ann. Mat. Pura Appl. (Ser. 4A)*, 83:261-336, 1969. **[MocFR]**-
D. Mochida, M. C. Romero Fuster, and M. Ruas.

The geometry of surfaces in 4-space from a contact viewpoint.*Geometriae Dedicata*, 54:323-332, 1995. **[Mon1]**-
J. A. Montaldi.
*Contact with applications to submanifolds*.

PhD thesis, University of Liverpool, 1982. **[Mon2]**-
J. A. Montaldi.

On contact between submanifolds.*Michigan Math. J.*, 33:195-199, 1986. **[Mon3]**-
J. A. Montaldi.

Surfaces in 3-space and their contact with circles.*J. Differential Geom.*, 22:109-126, 1986. **[NS]**-
J. J. Nuño Ballesteros and O. Saeki.

Singular surfaces in 3-manifolds, the tangent developable of a space curve and the dual of an immersed surface in 3-space.

In W.L. Marar, editor,*Real and Complex Singularities*, volume 333 of*Research Notes in Mathematics*, pages 49-64. Pittman, 1995. **[O1]**-
T. Ozawa.

On Halpern's conjecture for closed plane curves.*Proc. Amer. Math. Soc.*, 92(4):554-560, 1984. **[O2]**-
T. Ozawa.

On the number of tritangencies of a surface in**R**^{3}.

In D. Ferus, R. B. Gardner, S. Helgason, and U. Simon, editors,*Global Differential Geometry and Global Analysis 1984*, number 1156 in Lecture Notes in Math., pages 240-253. Springer-Verlag, 1985. **[P1]**-
I. R. Porteous.

The normal singularities of submanifolds.*J. Differential Geom.*, 5:543-564, 1971. **[P2]**-
I. R. Porteous.
*Geometric Differentiation*.

Cambridge University Press, 1994. **[R]**-
L Rodriguez.
*Geometria das Subvariedades*.

Number 26 in Monografias de Mathemática. IMPA, Rio de Janeiro, 1981. **[S]**-
M. I. N. Smith.
*Curvature, singularities, and projections of smooth maps*.

PhD thesis, Durham, 1971. **[T]**-
N. Takeuchi.

A closed surface of genus one cannot have seven circles through each point.*Proc. Amer. Math. Soc.*,**100**(1987), no. 1, 145-147. **[W]**-
H. Whitney.
*Lectures in Topology*.

University of Michigan Press, 1941.

BACK to Dan's Research Page.