Empirical Distributions
Distributions

• In the discrete case, a probability distribution is just a set of values, each with some probability of occurrence
 – Probabilities don’t change as values occur
 • Example, tossing a coin
• The distribution must cover all possibilities, so there is no probability of a value occurring that is not in the distribution
• An empirical distribution is one for which the values and their associated probabilities are determined by observation or experiment
• Since values may occur in ranges, empirical distributions that are not discrete are also used
Expected Value
Finite Discrete Case

- Finite case
 - Values v_1, v_2, \ldots, v_n
 - Probability of occurrence for each $p_1, p_2, \ldots p_n$
 - $\sum p_i = 1$ (intuitively, all possibilities are covered by requiring the sum to be 1)
 - Expected value $E = \sum p_i v_i$
 - Corresponds to the “weighted” sum of the v_i
 - where the p_i are the weights
 - The expected value is the average value when each value is equally probable
 - Average $= (\sum v_i)/n = \sum (1/n)v_i$
Expected Value
Infinite Discrete Case

- Infinite, discrete case
 - Values are “countable” (one to one correspondence with the counting numbers 1, 2, 3, …)
 - The infinite sequence of probabilities p_1, p_2, … still must have the property that $\sum p_i = 1$
- Determined as the limit of the sequence of partial sums; i.e.,
 $$\sum p_i = \lim_{n \to \infty} \sum_{1}^{n} p_i$$
Expected Value – Non-discrete Case

• Generalize from the discrete case by observing a graphical representation

- Area under the curve is 1

• This suggests that for values spanning a range, it is natural to think of the probability of the range as an area

• Uniformly spaced rectangles is how we approximate the value of integrals, the area under a curve
Probability Density Function

- The function describing the curve is called a “probability density function” (pdf)
 - Can assume the pdf takes values over real line from $-\infty$ to $+\infty$ (by letting it be 0, where not otherwise defined)
 - To be a pdf, p must have the property that $\int p(x) = 1$ over all real numbers x (area under the curve is 1)
 - Note that $\int_{a}^{b} p(x) = $ probability of the range of values between a and b
 - A point’s probability is 0, since the area under the curve for it is 0
 - $E = \int p(x) \cdot x \, dx$
 - Corresponds to the weighted sum
Defining an Empirical Distribution

- **Discrete case**
 - List each value with its corresponding probability
 - **Example**
 | Value | Probability | |
|---|---|---|
 | v_1 - | -2 | 0.3 |
 | v_2 - | 4 | 0.2 |
 | v_3 - | 5 | 0.15 |
 | v_4 - | 7 | 0.35 |
 - Sum of the probabilities must be 1
 - Expected value is
 $$-2 \times 0.3 + 4 \times 0.2 + 5 \times 0.15 + 7 \times 0.35 = 3.4$$
Defining an Empirical Distribution

- **Ranges case**

 - List the start point for each range with the probability of the range

 - Example

<table>
<thead>
<tr>
<th>Value</th>
<th>probability</th>
<th>range represented</th>
<th>cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0.3</td>
<td>-2 – 4</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>4 – 5</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.15</td>
<td>5 – 7</td>
<td>0.65</td>
</tr>
<tr>
<td>7</td>
<td>0.35</td>
<td>7 – 10</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 - Note that 4 ranges requires 5 values

 - Expected value is

\[
1 \times 0.3 + 4.5 \times 0.2 + 6 \times 0.15 + 8.5 \times 0.35 = 5.075
\]

 - Use the midpoint (average value) of each range
Sampling from Empirical Distributions

• Algorithms used will be covered later

• ExtendSim procedure
 – Select Empirical table
 – Select the sampling method
 • Stepped for sampling by linear interpolation (values drawn uniformly across each of the ranges)
 • Discrete for the sampling on step (discrete values)
 • Enter the data
 – *Time* and probability for a Create block
 – Enter times in the *Value* column
Warning

• If you switch between discrete and stepped, you will need to adjust your data
 – Stepped sampling requires an extra entry to terminate the final interval and has the final interval probability repeated