Empirical and Discrete Distributions
Empirical Distributions

- An **empirical distribution** is one for which each possible event is assigned a probability derived from experimental observation
 - It is assumed that the events are independent and the sum of the probabilities is 1

- An empirical distribution may represent either a continuous or a discrete distribution
 - If it represents a discrete distribution, then sampling is done “on step”
 - If it represents a continuous distribution, then sampling is done via “interpolation”
Discrete vs. Continuous Sampling

- The way the empirical table is described usually determines if an empirical distribution is to be handled discretely or continuously.

<table>
<thead>
<tr>
<th>discrete description</th>
<th>continuous description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>probability</td>
</tr>
<tr>
<td>10</td>
<td>.1</td>
</tr>
<tr>
<td>20</td>
<td>.15</td>
</tr>
<tr>
<td>35</td>
<td>.4</td>
</tr>
<tr>
<td>40</td>
<td>.3</td>
</tr>
<tr>
<td>60</td>
<td>.05</td>
</tr>
</tbody>
</table>
Empirical Distribution Linear Interpolation

- To use linear interpolation for continuous sampling, the discrete points on the end of each step need to be connected by line segments
 - This is represented in the graph by the green line segments
 - The steps are represented in blue

<table>
<thead>
<tr>
<th>discrete description</th>
<th>continuous description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>probability</td>
</tr>
<tr>
<td>10</td>
<td>.1</td>
</tr>
<tr>
<td>20</td>
<td>.15</td>
</tr>
<tr>
<td>35</td>
<td>.4</td>
</tr>
<tr>
<td>40</td>
<td>.3</td>
</tr>
<tr>
<td>60</td>
<td>.05</td>
</tr>
</tbody>
</table>
On Step vs. Linear Interpolation

- In the discrete case, sampling on step is accomplished by accumulating probabilities from the original table
 - For \(x = 0.4 \), accumulate probabilities until the cumulative probability exceeds 0.4
 - \(rsample \) is the event value at the point this happens
 - the cumulative probability \(0.1 + 0.15 + 0.4 \) is the first to exceed 0.4,
 - the \(rsample \) value is 35
- In the continuous case, the end points of the probability accumulation are needed
 - For \(x = 0.4 \), the values are \(x = 0.25 \) and \(x = 0.65 \) which represent the points \((0.25,20)\) and \((0.65,35)\) on the graph
 - From basic college algebra, the \(slope \) of the line segment is \((35-20)/(0.65-0.25) = 15/0.4 = 37.5 \)
 - \(slope = 37.5 = (35-rsample)/(0.65-0.4) \) so \(rsample = 35 - (37.5 \times 0.25) = 35 - 9.375 = 25.625 \)
Discrete Distributions

• Historical perspective behind the names used with discrete distributions
 – James Bernoulli (1654-1705) was a Swiss mathematician whose book *Ars Conjectandi* (published posthumously in 1713) was the first significant book on probability
 • It gathered together the ideas on counting, and among other things provided a proof of the binomial theorem
 – Siméon-Denis Poisson (1781-1840) was a professor of mathematics at the Faculté des Sciences whose 1837 text *Recherchés sur la probabilité des jugements en matière criminelle et en matière civile* introduced the discrete distribution now called the Poisson distribution

• Keep in mind that scholars such as these evolved their theories with the objective of providing sophisticated abstract models of real-world phenomena
 – An effort which, among other things, gave birth to the calculus as a major modeling tool
I. Bernoulli Distribution

- Bernoulli event
 - One for which the probability the event occurs is p and the probability the event does not occur is $1-p$
 - The event is has two possible outcomes (usually viewed as success or failure) occurring with probability p and $1-p$, respectively

- Bernoulli trial
 - An instantiation of a Bernoulli event

- Bernoulli process
 - A sequence of Bernoulli trials where probability p of success remains the same from trial to trial
 - This means that for n trials, the probability of n consecutive successes is p^n

- Bernoulli distribution
 - Given by the pair of probabilities of a Bernoulli event
 - Too simple to be interesting in isolation
 - Implicitly used in “yes-no” decision processes where the choice occurs with the same probability from trial to trial
 - e.g., the customer chooses to go down aisle 1 with probability p
 - It can be cast in the same kind of mathematical notation used to describe more complex distributions
Bernoulli Distribution pdf

\[
p(z) = \begin{cases}
p^z(1-p)^{1-z} & \text{for } z = 0, 1 \\
0 & \text{otherwise}
\end{cases}
\]

- The expected value of the distribution is given by
 \[
 E(X) = (1-p) \cdot 0 + p \cdot 1 = p
 \]
- The standard deviation is given by
 \[
 \sigma = \sqrt{(1-p)(0-p)^2 + p(1-p)^2} = \sqrt{p \cdot (1-p)}
 \]
- Notational overkill, but useful for understanding other distributions
Sampling

• Sampling from a discrete distribution, requires a function that corresponds to the distribution function of a continuous distribution f given by

$$F(x) = \int_{-\infty}^{x} f(z) dz$$

• This is given by the mass function $F(x)$ of the distribution, which is the step function obtained from the cumulative (discrete) distribution given by the sequence of partial sums

• For the Bernoulli distribution, $F(x)$ has the construction

$$0 \quad \text{for} \quad -\infty \leq x < 0$$
Graph of F(x) and Sampling Function

- F(x)

- Sampling function
 - for random value x drawn from [0,1),
 \[rsample = \begin{cases}
 0 & \text{if } 0 \leq x < 1-p \\
 1 & \text{if } 1-p \leq x < 1
 \end{cases} \]
 - demonstrates that sampling from a discrete distribution, even one as simple as the Bernoulli distribution, can be viewed in the same manner as for continuous distributions
II. Binomial Distribution

• The Bernoulli distribution represents the success or failure of a single Bernoulli trial

• The Binomial Distribution represents the number of successes and failures in n independent Bernoulli trials for some given value of n
 – For example, if a manufactured item is defective with probability p, then the binomial distribution represents the number of successes and failures in a lot of n items
 • Unlike a barrel of apples, where one bad apple can cause others to be bad
 – Sampling from this distribution gives a count of the number of defective items in a sample lot
 – Another example is the number of heads obtained in tossing a coin n times
Binomial Theorem

• The binomial distribution gets its name from the binomial theorem

\[(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \text{ where } \binom{n}{k} = \frac{n!}{k!(n-k)!}\]

• It is worth pointing out that if \(a = b = 1\), this becomes \((1+1)^n = 2^n = \sum_{0}^{n} \binom{n}{k}\)

• If \(S\) is a set of size \(n\), the number of \(k\) element subsets of \(S\) is given by

\[\frac{n!}{k!(n-k)!} = \binom{n}{k}\]

• This formula is the result of a simple counting analysis: there are

\[n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}\]

ordered ways to select \(k\) elements from \(n\)

– \(n\) ways to choose the 1st item, \((n-1)\) the 2nd, and so on
– Any given selection is a permutation of its \(k\) elements, so the underlying subset is counted \(k!\) times
– Dividing by \(k!\) eliminates the duplicates

• Consequence: \(2^n\) counts the total number of subsets of an \(n\)-element set
Binomial Distribution pdf

- For n independent Bernoulli trials the pdf of the binomial distribution is given by
 \[
p(z) = \binom{n}{z} p^z (1-p)^{n-z} \text{ for } z = 0, 1, \ldots, n
 \]
 \[
 0 \text{ otherwise}
 \]
- By the binomial theorem
 \[
 \sum_{z=0}^{n} p(z) = (p + (1 - p))^n = 1
 \]
 verifying that $p(z)$ is a pdf
- When choosing z items from among n items with probability p for an item being defective, the term
 \[
 \binom{n}{z} p^z (1-p)^{n-z}
 \]
 represents the probability that z are defective (and concomitantly that $(n-z)$ are not defective)
Expected Value and Variance

- **E(X) = np** for a binomial distribution on n items where probability of success is p

- The calculation is accomplished by

\[
E(X) = \sum_{i=1}^{n} p(z_i) \cdot z_i = \sum_{i=0}^{n} \binom{n}{z} p^z (1-p)^{n-z} \cdot z = \sum_{i=1}^{n} \frac{n!}{z!(n-z)!} p^z (1-p)^{n-z} \cdot z
\]

\[
= \sum_{i=1}^{n} \binom{n-1}{z-1} p^{z-1} (1-p)^{n-z} \cdot np = np \cdot \sum_{i=1}^{n} \binom{n-1}{z-1} p^{z-1} (1-p)^{n-z} = np(p+1-p)^{n-1} = np
\]

- It can be similarly shown that the **standard deviation** is \(\sqrt{np \cdot (1-p)}\)
The binomial distribution with $n=10$ and $p=0.7$ appears as follows:

Its corresponding mass function $F(z)$ is given by
Sampling Function

- A typical sampling tactic is to accumulate the sum \(\sum_{0}^{rsample} p(z) \)
 increasing \(rsample \) until the sum's value exceeds the random value between 0 and 1 drawn for \(x \)
 - The final \(rsample \) summation limit is the sample value
 - In contrast to a continuous pdf described by some formula, the function for a finite discrete pdf has to be given in its relational form by a table of pairs, which in turn mandates the kind of "search" algorithm approach used above to obtain \(rsample \)
III. Poisson Distribution

(values \(z = 0, 1, 2, \ldots \))

- With a little work it can be shown that the Poisson distribution is the limiting case of the binomial distribution using \(p = \frac{\lambda}{n} \rightarrow 0 \) as \(n \rightarrow \infty \)
- The expected value \(E(X) = \lambda \)
- The standard deviation is \(\sqrt{\lambda} \)
- The pdf is given by
 \[
 p(z) = \frac{\lambda^z \cdot e^{-\lambda}}{z!}
 \]

- This distribution dates back to Poisson's 1837 text regarding civil and criminal matters, in effect scotching the tale that its first use was for modeling deaths from the kicks of horses in the Prussian army
- In addition to modeling the number of arrivals over some interval of time the distribution has also been used to model the number of defects on a manufactured article
 - Recall the relationship to the exponential distribution; a \textit{Poisson process} has exponentially distributed interarrival times
- In general the Poisson distribution is used for situations where the probability of an event occurring is very small, but the number of trials is very large (so the event is expected to actually occur a few times)
 - Less cumbersome than the binomial distribution
Graph of pdf and Sampling Function

- With $\lambda = 2$
IV. Geometric Distribution

• The geometric distribution gets its name from the geometric series:

\[\sum_{0}^{\infty} r^n = \frac{1}{1-r}, \quad \sum_{0}^{\infty} n \cdot r^n = \frac{r}{(1-r)^2}, \quad \sum_{0}^{\infty} (n+1) \cdot r^n = \frac{1}{(1-r)^2} \]

• The pdf for the geometric distribution is given by

\[p(z) = \begin{cases}
(1-p)^{z-1} \cdot p & \text{for } z = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases} \]

• The geometric distribution is the discrete analog of the exponential distribution
 - Like the exponential distribution, it is "memoryless"; i.e.,
 \[P(X > a+b \mid X > a) = P(X > b) \]
 - The geometric distribution is the only discrete distribution with this property just as the exponential distribution is the only continuous one behaving in this manner
Expected Value and Standard Deviation

- With expected value is given by
 \[E(X) = \sum_{1}^{\infty} z(1 - p)^{z-1} \cdot p = p \cdot \frac{1}{(1-1+p)^2} = \frac{1}{p} \]

 - by applying the 3rd form of the geometric series

- The standard deviation is given by
 \[\sqrt{1 - \frac{p}{p}} = 1 \]
Graph

- A plot of the geometric distribution with \(p = 0.3 \) is given by
Utilization

• A typical use of the geometric distribution is for modeling the number of failures before the first success in a sequence of independent Bernoulli trials.

• This is the scenario for making sales:
 – Suppose that the probability of making a sale is 0.3
 – Then
 • $p(1) = 0.3$ is the probability of success on the 1st try
 • $p(2) = (1-p)p = 0.7 \times 0.3 = 0.21$ which is the probability of failing on the 1st try (with probability 1-p) and succeeding on the 2nd (with probability p)
 • $p(3) = (1-p)(1-p)p = 0.15$ is the probability that the sale takes 3 tries, and so forth
 – A random sample from the distribution represents the number of attempts needed to make the sale.